logo
Record-Sized Collision Between Black Holes Detected by Astronomers

Record-Sized Collision Between Black Holes Detected by Astronomers

Yahoo4 days ago
Two black holes have collided in a merger that could revolutionize our understanding of black hole growth.
Named GW 231123 after the date it was recorded on 23 November 2023, it's the most massive black hole collision we've seen yet, resulting in an object heavier than 225 Suns.
Previously, the most massive black hole collision produced an object 142 times the mass of the Sun.
What makes this so incredible is that each of the black holes involved in the collision is heavier than the upper mass limit for black holes formed from a single stellar core – suggesting both may have been involved in previous collisions.
Related: Astronomers Detect a 'Tsunami' of Gravitational Waves. Here's Where They're Coming From
"This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation," says astronomer and physicist Mark Hannam of Cardiff University in the UK.
"Black holes this massive are forbidden through standard stellar evolution models. One possibility is that the two black holes in this binary formed through earlier mergers of smaller black holes."
Gravitational wave astronomy kicked off in 2015, when the LIGO interferometer detected the faint signal from the gravitational ripples sent propagating through space-time as two extreme objects merged and became one. Since then, LIGO has been joined by the Virgo and KAGRA facilities, collecting some 300 or so signals from black hole pairs colliding across the Universe.
Astronomers can analyze and tease apart the signals, using the ripples to ascertain the properties of the black holes that made them.
Here's where it gets really cool: small black holes are really hard to find in space, since they emit no detectable light. By collecting data on mergers, astronomers are collecting data on the reality of black holes.
Much of the research around these hyperdense objects has been, by necessity, theoretical. We know that the smaller ones (as opposed to supermassive black holes millions of Suns in mass) are the remains of massive stars that go supernova, their cores collapsing under gravity to form objects so dense, light can't escape their gravitational hold.
Related: The Birth of a Black Hole Created The Brightest Space Explosion Ever Seen
There is, however, an upper limit to the size of black hole this formation mechanism can produce – because above a certain weight, stars explode in what is called a pair-instability supernova that completely obliterates the core. We don't know for sure what that limit is, but it could be as low as 40 or so solar masses, and as high as 60.
We've already uncovered evidence of black holes that exceed this weight limit. That 142 solar mass merger involved black holes 66 and 85 times the mass of the Sun. But GW 231123 ups the ante rather spectacularly.
In addition, both of the black holes involved in the event were spinning very fast, very close to the theoretical limit, the researchers say. This complicated the signal quite a bit – but it could also be a clue about the history of the black holes. When two black holes combine, the resulting single object should have a faster spin rate, a property scientists have proposed as a tool for determining whether a black hole is the product of a previous merger.
It's going to take further analysis to unravel all the complexities of GW 231123, but the event could validate scientific theories about how black holes form. It could also be a huge clue about how supermassive black holes grow, since we don't know how they get from objects comparable in mass to a star to the giant behemoths around which entire galaxies whirl.
"It will take years for the community to fully unravel this intricate signal pattern and all its implications," says physicist Gregorio Carullo of the University of Birmingham in the UK. "Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features. Exciting times ahead!"
The team's findings will be presented at the 24th International Conference on General Relativity and Gravitation and the 16th Edoardo Amaldi Conference on Gravitational Waves.
A 400-Year-Old Mystery About The Sun May Finally Be Solved
Mars Seen Up Close in Stunning World First 60 Years Ago Today
NASA Rover Breaks Record For Longest Road Trip on Another Planet
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Colossal eruption carves 250,000-mile-long 'canyon of fire' into the sun (video)
Colossal eruption carves 250,000-mile-long 'canyon of fire' into the sun (video)

Yahoo

time19 hours ago

  • Yahoo

Colossal eruption carves 250,000-mile-long 'canyon of fire' into the sun (video)

When you buy through links on our articles, Future and its syndication partners may earn a commission. On July 15, a colossal filament erupted from the sun's northeastern limb, dramatically reshaping part of our star's surface, albeit briefly, and unleashing a coronal mass ejection (CME) into space. The outburst was so powerful that it carved a glowing trench of hot plasma more than 250,000 miles (about 400,000 kilometers) long, roughly the distance from Earth to the moon. The explosive event was captured in stunning detail by NASA's Solar Dynamics Observatory (SDO), showing the filament unraveling as solar material arcs and cascades through the sun's atmosphere. As the filament collapsed, it left behind what some call a "canyon of fire," with towering walls estimated to rise at least 12,400 miles (20,000 km) high, according to These glowing rifts form when the sun's magnetic field lines violently snap and realign after an eruption, leaving behind a searing hot trench of plasma that traces the reshaping magnetic field, according to NASA. This fiery chasm isn't just a visual spectacle. Filaments are cooler, dense ribbons of solar plasma that can hang suspended above the sun's surface by magnetic fields, according to NOAA. When these become unstable, they can erupt dramatically, sometimes launching coronal mass ejections (CMEs) into space — powerful blasts of solar plasma and magnetic fields that can trigger geomagnetic storms here on Earth. Coronagraph imagery from the Solar and Heliospheric Observatory (SOHO) and GOES-19 satellite suggests that while the filament eruption did release a CME, there is no Earth-directed component. "The CME is heading away from Earth," aurora chaser Vincent Ledvina wrote in a post on X. "Here is the CME in LASCO C2 (left) and CCOR-1 (right) which has a later frame of the CME further spread out. The front is traveling pretty slowly and away from Earth." You can keep up to date with the latest northern lights forecasts, alerts and geomagnetic storm warnings with our aurora forecast live blog. Solve the daily Crossword

Scientists measure largest ever collision of two black holes
Scientists measure largest ever collision of two black holes

Yahoo

timea day ago

  • Yahoo

Scientists measure largest ever collision of two black holes

Two black holes have collided far beyond the distant edge of the Milky Way, creating the biggest merger ever recorded by gravitational wave detectors. The two phenomena, each more than 100 times the mass of the sun, had been circling each other before they violently collided about 10 billion light years from Earth. Scientists at the Ligo Hanford and Livingston Observatories detected ripples in space-time from the collision just before 2pm UK time on 23 November 2023, when the two US-based detectors in Washington and Louisiana twitched at the same time. Alongside their enormous masses, the signal, dubbed GW231123 after its discovery date, also showed the black holes spinning rapidly, according to researchers. 'This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation,' said Professor Mark Hannam, from Cardiff University and a member of the Ligo Scientific Collaboration. An artist's impression of a black hole using data from Nasa's James Webb Space Telescope (Nasa/JWST) Gravitational-wave observatories have recorded around 300 black hole mergers. Prior to GW231123, the heaviest merger detected was GW190521, whose combined mass was 140 times that of the sun. The latest merger produced a black hole up to 265 times more massive than the sun. 'The black holes appear to be spinning very rapidly — near the limit allowed by Einstein's theory of general relativity,' said Dr Charlie Hoy from the University of Portsmouth. 'That makes the signal difficult to model and interpret. It's an excellent case study for pushing forward the development of our theoretical tools.' 'It will take years for the community to fully unravel this intricate signal pattern and all its implications,' said Dr Gregorio Carullo, assistant professor at the University of Birmingham. 'Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features. Exciting times ahead!" Facilities like Ligo in the United States, Virgo in Italy, and KAGRA in Japan are engineered to detect the tiniest distortions in spacetime caused by violent cosmic events such as black hole mergers. The fourth observing run began in May 2023, and data through January 2024 are scheduled for release later this summer. 'This event pushes our instrumentation and data-analysis capabilities to the edge of what's currently possible,' says Dr Sophie Bini, a postdoctoral researcher at Caltech. 'It's a powerful example of how much we can learn from gravitational-wave astronomy — and how much more there is to uncover.' GW231123 is set to be presented at the 24th International Conference on General Relativity and Gravitation (GR24) and the 16th Edoardo Amaldi Conference on Gravitational Waves, held jointly as the GR-Amaldi meeting in Glasgow, from 14 to 18 July.

NASA Just Captured the Closest Images of the Sun Ever, from Inside Its Atmosphere
NASA Just Captured the Closest Images of the Sun Ever, from Inside Its Atmosphere

Yahoo

time2 days ago

  • Yahoo

NASA Just Captured the Closest Images of the Sun Ever, from Inside Its Atmosphere

If you want to capture the majesty of the Sun, you should probably ask an artist, but if you want to capture its raw power, that's a job for a robot. While generations of artists have painted or photographed sunsets and poets have written sonnets to the Sun, NASA's Parker Solar Probe (PSP) just sent back the closest solar snapshots of all time. While our planet sits a cozy 93 million miles away from the fusion inferno of our star, Parker gets as close as 3.8 million miles, close enough to get inside the Sun's sweltering and chaotic atmosphere. The images put us inside the solar wind, electrically charged solar particles which race across the solar system at more than a million miles an hour. For More on the Sun Parker Solar Probe snaps closest images of the Sun ever taken SYFY's The Ark follows the crew of an interstellar spacecraft on a multi-light-year journey to the star next door. In the real world, NASA's Parker Solar Probe is doing the next best thing, having traveled 90 million miles from home to get up close and personal with the Sun. In addition to being infinitely cool, the data sent back by PSP helps scientists better understand space weather, including powerful coronal mass ejections (CMEs) which have the potential to damage spacecraft and Earth's electrical and communications systems. The probe was launched aboard a Delta IV rocket in 2018 and has been on a spiraling path, winding its way closer to the Sun ever since. It began its most recent approach in December of 2024 and completed its most recent flyby of the Sun from June 14 to June 24, 2025. It was the probe's 24th pass of the Sun and the third to reach an altitude of just 3.8 million miles. 'Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,' said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington, in a statement. 'We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.' Parker measures the environment around the Sun with an array of instruments. SWEAP, short for Solar Winds Electrons Alphas and Protons investigation, studies the characteristics of particles in the solar wind, while WISPR (Wide-Field Imager for Solar Probe) captures images in visible light. WISPR takes images of solar particles just as they're leaving the Sun and the new images showcase the interaction of multiple outflows. You can also see the place where three CMEs collide, forming a perfect storm in space, 90 million miles away. Scientists are hoping these images will help us to better understand and defend against CMEs in the future. When multiple coronal mass ejections pop off at the same time, it makes them harder to predict, can complicate their magnetic properties, and can accelerate charged particles, making them even more dangerous if they happen to come our way. 'In these images, we're seeing the CMEs basically piling up on top of one another,' said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. 'We're using this to figure out how the CMEs merge together, which can be important for space weather.' The future of the Parker Solar Probe is uncertain This was the 24th and final approach of Parker's planned primary mission. Its job is done, but it can't come home. As of June 22, 2025, when the probe checked in with the team at Johns Hopkins Applied Physics Lab, all systems were operational and healthy, so it can still do plenty of useful science. For now, Parker will remain in orbit and continue making observations, while the folks at NASA figure out where they want to go from here. 'Parker Solar Probe remains in excellent health, with both the spacecraft and its instruments ready to continue their groundbreaking mission,' said Arik Posner, Parker Solar Probe program scientist at NASA Headquarters in Washington. 'The spacecraft will keep exploring the solar atmosphere as the Sun enters the declining phase of its 11-year cycle, providing a unique opportunity to study how solar activity evolves and shapes the heliosphere during this pivotal period.' While we're waiting to see what's next for NASA's PSP, check out The Ark, . Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store