Something Strange Is Happening 1,700 Miles Beneath Your Feet. Now We Know Why.
"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links."
Here's what you'll learn when you read this story:
Over a thousand miles from the surface, in Earth's D' layer—right on the edge of the liquid metal outer core—there is a weird acceleration of seismic waves.
Experiments recreating the phenomenon in a lab found that this is the result of post-perovskite crystals, which form from perovskite.
The alignment of these crystals determines their hardness, which then determines how fast seismic waves can move through them.
Deep beneath Earth's surface are layers of soil, rock strata often embedded with fossils, gurgling magma, and—back up. Before your Journey to the Center of the Earth mission can get any further, you're going to have to get past flows of solid rock.
The D' layer—located between layers of magma above and the liquid rock of the outer core below—has been mystifying scientists for decades. This is in part because if you were to plunge down 2,700 kilometers (1,700 miles), you would be jump-scared by seismic waves that accelerate when they hit the threshold of the D' layer. It used to be thought the reason for this was the mineral perovskite, found in the lower mantle, morphing into a form known as post-perovskite close to the D' layer. But that still wasn't enough to explain the phenomenon.
Geoscientist Motohiko Murakami wanted to investigate what could possibly be going on to cause the strange seismic wave acceleration known as the D' discontinuity. Because trekking to the core-mantle boundary (CMB) where the D' layer lies is obviously not an option, he led a team of researchers from Switzerland and Japan in running lab tests and computer simulations to find out what post-perovskite had to do with he unusual increase in seismic waves.
Post-perovskite crystals are anisotropic, meaning their physical properties are different when measured in different directions. They have two different types of textures—one comes from transformation (the phase transition from the perovskite phase to post-perovskite), and the other is a result of deformation (when post-perovskite crystals turn to face in the same direction). Murakami and his team found out that it isn't just transformation that causes the rumbling. It actually happens with deformation.
'The deformation-induced texture forms when crystals undergo plastic deformation, causing their orientations to align in specific directions. It is mainly produced by dislocation slip or creep,' Murakami said in a study recently published in the journal Communications Earth & Environment.
How post-perovskite crystals are aligned determines their hardness, and the speed at which seismic waves move through them depends on how hard they are. Materials called perovskites can be created from any substances capable of being arranged into the same cubic crystal structure. Perovskite is a calcium titanium oxide mineral (CaTiO3), while post-perovskite is a form of magnesium silicate (MgSiO3) achieved at extremely high pressures. Its crystal structure is orthorhombic, meaning that the right angles of the cubes have unequal axes.
For post-perovskite crystals to align with each other, the axes all have to be in the same position. Murakami used MgGeO3 to create crystals analogous to post-perovskite. Like perovskite, MgGeO3 crystals deform easily when pressure is applied, so how they behaved would reflect was is going on over a thousand miles underground. The crystals were heated by a laser, compressed, and heated again to synthesize post-perovskite. They were then exposed to high-pressure sound waves, and the wave velocity was measured once those waves passed through the crystals.
It turned out that sound waves can experience a substantial increase in velocity when passing through aligned post-perovskite crystals. Researchers also discovered that the cause of this alignment—which determines the hardness of the material, and therefore the speed of sound waves in the lab and seismic waves deep in Earth—is convection. As hotter material rises, cooler material sinks, as it does in convective storms like hurricanes.
Murakami thinks that convection of materials in the mantle (such as plumes rising and slavs sinking) is behind the deformation in the D' layer. This is the first time any evidence—even lab-based evidence—has been found for Earth's innards moving.
'While previous theoretical work has suggested that anisotropy could explain the observed seismic discontinuities,' he said. 'Our results, obtained through in situ measurements of post-perovskite velocities under high pressure, represent the experimental verification of this hypothesis, bridging the gap between theory and observation.'
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Something is ‘pulsing' beneath the Earth, scientists say – and could tear a continent apart
Scientists have detected deep pulses in the Earth beneath Africa – and it could tear the continent apart. The pulses are made up of molten mantle rock surging in rhythm, the researchers say. The plume of hot mantle is surging upwards in pulses that are like a heartbeat, they say. Eventually, the continent will be torn apart and a new ocean will be formed. That will take place over millions of years, as the tectonic plates are ripped apart at rift zones like those in the Afar region in Ethiopia. That is where scientists found the evidence of the unexpected behaviour. 'We found that the mantle beneath Afar is not uniform or stationary – it pulses, and these pulses carry distinct chemical signatures,' said Emma Watson, the scientist who led the study. 'These ascending pulses of partially molten mantle are channelled by the rifting plates above. That's important for how we think about the interaction between Earth's interior and its surface.' In the research, scientists gathered samples from the Afar region, where three tectonic rifts meet. Scientists have long thought that mantle was being pushed up making the crust extend, eventually giving birth to a new ocean basin, but did not know how it was happening. To better understand that process, they took those samples and combined them with existing data and models to understand the plume beneath the surface of the Earth. They showed that there is one asymmetric plume beneath the surface. 'We have found that the evolution of deep mantle upwellings is intimately tied to the motion of the plates above. This has profound implications for how we interpret surface volcanism, earthquake activity, and the process of continental breakup,' said Derek Keir, a co-author. 'The work shows that deep mantle upwellings can flow beneath the base of tectonic plates and help to focus volcanic activity to where the tectonic plate is thinnest. Follow on research includes understanding how and at what rate mantle flow occurs beneath plates,' The work is described in a new paper, 'Mantle upwelling at Afar triple junction shaped by overriding plate dynamics', published in the journal Nature Geoscience.


Business Wire
an hour ago
- Business Wire
Rocket Lab to Launch Electron Mission for European Space Agency's Next-Generation Navigation System
LONG BEACH, Calif.--(BUSINESS WIRE)--Rocket Lab Corporation (Nasdaq: RKLB) ('Rocket Lab' or the 'Company'), a global leader in launch services and space systems, today announced it has been selected to launch a dedicated Electron mission for the European Space Agency ('ESA') for the first time, to deploy the first pair of satellites for a future navigation constellation for Europe, LEO-PNT. Rocket Lab will launch two 'Pathfinder A' spacecraft for ESA, provided by European satellite prime contractors Thales Alenia Space and GMV, from Rocket Lab Launch Complex 1 no earlier than December 2025. The spacecraft will be deployed to a 510km low Earth orbit as part of a mission to test a new approach of providing location, direction, and timing services from satellites in low orbit – otherwise called LEO-PNT (Low Earth Orbit Positioning, Navigation, and Timing). ESA's LEO-PNT demonstration mission will assess how a low Earth orbit fleet of satellites can work in combination with the Galileo and EGNOS constellations in higher orbits that provide Europe's own global navigation system. Rocket Lab founder and CEO, Sir Peter Beck, says: 'Launching a European mission on Electron that is integral to the future of Europe's satellite navigation system is both an honor and a testament to our industry-leading launch service. An important constellation like LEO-PNT needs a strong foundation to grow from, and with Electron's track record of precise orbital deployment, we're excited to help secure the future of LEO-PNT for Europe with our launch of these first two satellites in the constellation.' This latest launch contract underscores Electron's international reputation as an industry-leading launcher, and reinforces Rocket Lab's commitment to supporting the growing demand for space access by European constellation operators. Earlier this year Electron completed the deployment of an entire constellation of Internet-of-Things satellites for French satellite operator Kinéis, before launching a global wildfire detection mission for Germany-based customer OroraTech. Missions for other European satellite operators on Electron date back to 2021. About Rocket Lab Founded in 2006, Rocket Lab is an end-to-end space company with an established track record of mission success. We deliver reliable launch services, satellite manufacture, spacecraft components, and on-orbit management solutions that make it faster, easier, and more affordable to access space. Headquartered in Long Beach, California, Rocket Lab designs and manufactures the Electron small orbital launch vehicle, the HASTE suborbital launch vehicle for hypersonic tests, a family of flight proven spacecraft, and the larger Neutron launch vehicle for constellation deployment. Since its first orbital launch in January 2018, Rocket Lab's Electron launch vehicle has become the second most frequently launched U.S. rocket annually. Rocket Lab has deployed 200+ payloads from its launch sites in the United States and New Zealand for private and public sector organizations, enabling operations in national security, scientific research, space debris mitigation, Earth observation, climate monitoring, and communications. Rocket Lab's family of spacecraft have been selected to support NASA missions to the Moon and Mars, as well as the first private commercial mission to Venus. Rocket Lab has three launch pads at two launch sites, including two launch pads at a private orbital launch site located in New Zealand and a third launch pad in Virginia. To learn more, visit Forward Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. We intend such forward-looking statements to be covered by the safe harbor provisions for forward looking statements contained in Section 27A of the Securities Act of 1933, as amended (the 'Securities Act') and Section 21E of the Securities Exchange Act of 1934, as amended (the 'Exchange Act'). All statements contained in this press release other than statements of historical fact, including, without limitation, statements regarding our launch and space systems operations, launch schedule and window, safe and repeatable access to space, Neutron development, operational expansion and business strategy are forward-looking statements. The words 'believe,' 'may,' 'will,' 'estimate,' 'potential,' 'continue,' 'anticipate,' 'intend,' 'expect,' 'strategy,' 'future,' 'could,' 'would,' 'project,' 'plan,' 'target,' and similar expressions are intended to identify forward-looking statements, though not all forward-looking statements use these words or expressions. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including but not limited to the factors, risks and uncertainties included in our Annual Report on Form 10-K for the fiscal year ended December 31, 2024, as such factors may be updated from time to time in our other filings with the Securities and Exchange Commission (the 'SEC'), accessible on the SEC's website at and the Investor Relations section of our website at which could cause our actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent management's estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.
Yahoo
8 hours ago
- Yahoo
Something Strange Is Happening 1,700 Miles Beneath Your Feet. Now We Know Why.
"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Over a thousand miles from the surface, in Earth's D' layer—right on the edge of the liquid metal outer core—there is a weird acceleration of seismic waves. Experiments recreating the phenomenon in a lab found that this is the result of post-perovskite crystals, which form from perovskite. The alignment of these crystals determines their hardness, which then determines how fast seismic waves can move through them. Deep beneath Earth's surface are layers of soil, rock strata often embedded with fossils, gurgling magma, and—back up. Before your Journey to the Center of the Earth mission can get any further, you're going to have to get past flows of solid rock. The D' layer—located between layers of magma above and the liquid rock of the outer core below—has been mystifying scientists for decades. This is in part because if you were to plunge down 2,700 kilometers (1,700 miles), you would be jump-scared by seismic waves that accelerate when they hit the threshold of the D' layer. It used to be thought the reason for this was the mineral perovskite, found in the lower mantle, morphing into a form known as post-perovskite close to the D' layer. But that still wasn't enough to explain the phenomenon. Geoscientist Motohiko Murakami wanted to investigate what could possibly be going on to cause the strange seismic wave acceleration known as the D' discontinuity. Because trekking to the core-mantle boundary (CMB) where the D' layer lies is obviously not an option, he led a team of researchers from Switzerland and Japan in running lab tests and computer simulations to find out what post-perovskite had to do with he unusual increase in seismic waves. Post-perovskite crystals are anisotropic, meaning their physical properties are different when measured in different directions. They have two different types of textures—one comes from transformation (the phase transition from the perovskite phase to post-perovskite), and the other is a result of deformation (when post-perovskite crystals turn to face in the same direction). Murakami and his team found out that it isn't just transformation that causes the rumbling. It actually happens with deformation. 'The deformation-induced texture forms when crystals undergo plastic deformation, causing their orientations to align in specific directions. It is mainly produced by dislocation slip or creep,' Murakami said in a study recently published in the journal Communications Earth & Environment. How post-perovskite crystals are aligned determines their hardness, and the speed at which seismic waves move through them depends on how hard they are. Materials called perovskites can be created from any substances capable of being arranged into the same cubic crystal structure. Perovskite is a calcium titanium oxide mineral (CaTiO3), while post-perovskite is a form of magnesium silicate (MgSiO3) achieved at extremely high pressures. Its crystal structure is orthorhombic, meaning that the right angles of the cubes have unequal axes. For post-perovskite crystals to align with each other, the axes all have to be in the same position. Murakami used MgGeO3 to create crystals analogous to post-perovskite. Like perovskite, MgGeO3 crystals deform easily when pressure is applied, so how they behaved would reflect was is going on over a thousand miles underground. The crystals were heated by a laser, compressed, and heated again to synthesize post-perovskite. They were then exposed to high-pressure sound waves, and the wave velocity was measured once those waves passed through the crystals. It turned out that sound waves can experience a substantial increase in velocity when passing through aligned post-perovskite crystals. Researchers also discovered that the cause of this alignment—which determines the hardness of the material, and therefore the speed of sound waves in the lab and seismic waves deep in Earth—is convection. As hotter material rises, cooler material sinks, as it does in convective storms like hurricanes. Murakami thinks that convection of materials in the mantle (such as plumes rising and slavs sinking) is behind the deformation in the D' layer. This is the first time any evidence—even lab-based evidence—has been found for Earth's innards moving. 'While previous theoretical work has suggested that anisotropy could explain the observed seismic discontinuities,' he said. 'Our results, obtained through in situ measurements of post-perovskite velocities under high pressure, represent the experimental verification of this hypothesis, bridging the gap between theory and observation.' You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?