logo
Largest known Martian meteorite on Earth sells for $5.3 million at auction

Largest known Martian meteorite on Earth sells for $5.3 million at auction

Yahoo3 days ago
When you buy through links on our articles, Future and its syndication partners may earn a commission.
The largest known Martian meteorite has just been sold at auction for $5.29 million, selling well over the asking price of $2 million to $4 million. The hefty chunk of the Red Planet could help us learn more about our cosmic neighbor — if it's allowed to be properly studied.
The meteorite, dubbed Northwest Africa (NWA) 16788, is around twice the size of a basketball and weighs 54 pounds (24.5 kilograms), making it "the largest known piece of Mars ever found on Earth," according to Sotheby's — the auction house responsible for selling the space rock.
It is around 70% larger than the previous largest known Martian meteorite, and is described as having a "deep red hue" and a "glassy crust," according to Sotheby's.
An anonymous meteorite hunter recovered NWA 16788 from part of the Sahara desert in Niger in November 2023. The space rock was known to scientists before now but has not been studied in detail, meaning it is currently unclear how old the space rock is, according to a 2024 study.
"NWA 16788 is a geological time capsule from another world," Sotheby's representatives wrote. "With fewer than 400 Martian meteorites ever recorded, and most no larger than a pebble, this specimen offers the biggest tangible connection to a planet that has captivated humanity for centuries."
Related: 32 things on Mars that look like they shouldn't be there
The meteorite was sold at a natural history-themed auction held at Sotheby's New York auction house on Wednesday (July 16), along with more than 100 other lots, which included dinosaur fossils, megalodon teeth, Neanderthal tools, rare minerals, a piece of "fossilized lightning" and several other meteorites. Sold at the same auction was the mounted skeleton of a juvenile ceratosaurus, a theropod dinosaur that lived during the late Jurassic period. The skeleton sold for $30.5 million, making it the third most-expensive dinosaur fossil ever sold at auction. The most expensive fossil ever sold was a stegosaurus skeleton named "Apex," which sold for $44.6 million in July 2024.
What can we learn from Martian meteorites?
Martian meteorites are chunks of the Red Planet that were ejected into space as asteroids and comets smashed into the alien world. Most of these fragments have likely drifted in space for millions, if not billions, of years before eventually falling to Earth.
While several Mars rovers have examined rocks on the Red Planet, these robots haven't returned any to Earth so far, and this is unlikely to change due to NASA's recent cancellation of the Mars Sample Return mission, meaning meteorites like NWA 16788 are currently the only way of directly studying Mars' origins on Earth. (A planned Chinese mission could bring Mars samples back to Earth no sooner than 2031.)
Martian meteorites on Earth have already led to multiple discoveries: For example, in 2023, researchers discovered a "huge diversity" of organic compounds hiding in a rock that was recovered from Morocco; and in 2024, experts uncovered evidence of ancient water on Mars in a rediscovered meteorite found in a university collection.
RELATED STORIES
—Single enormous object left 2 billion craters on Mars, scientists discover
—A Martian meteorite is going home, in NASA's Perseverance mission launch
—Massive Martian meteor impact was largest ever recorded in solar system
Researchers have also traced back the likely origins of more than 200 Martian meteorites and found that they can be linked to just five different impact sites on Mars, hinting that the space rocks can be used to study specific Mars locations.
Whether or not researchers can learn more about the Red Planet from NWA 16788 depends on whether its new owner allows it to be studied by scientists.
Solve the daily Crossword
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Don't panic if you get a lot of light sleep — expert explains why it's just as important as deep sleep
Don't panic if you get a lot of light sleep — expert explains why it's just as important as deep sleep

Yahoo

time11 hours ago

  • Yahoo

Don't panic if you get a lot of light sleep — expert explains why it's just as important as deep sleep

When you buy through links on our articles, Future and its syndication partners may earn a commission. Light sleep makes up a significant portion of our rest but the term might cause alarm in some if they think they're getting too much 'light sleep' and not enough 'deep sleep.' Sleep trackers label it vaguely, but what does light sleep actually do for the body and mind? Spencer Dawson, PhD, Assistant Clinical Professor and Associate Director of Clinical Training at Indiana University's Department of Psychological and Brain Sciences describes the stages of 'light sleep' as well as what happens during them. Remember, if you're monitoring sleep using wearables, try not to put too much weight into their sleep tracking and scores. They aren't looking at brain activity—which is how sleep professionals know what's truly happening and when you're in specific sleep stages and those who love to know their sleep score, here's a trick that can get it to the 90s. What is light sleep? "When I see the term 'light sleep,' it's usually in association with someone using wearables,' says Dr. Dawson. This includes non-REM (rapid-eye movement) 1 and non-REM 2 sleep, he says. "Previously, these were called stages one and two, but now they're more specifically categorized as NREM1 and NREM2." NREM3 is considered deep sleep, and all three stages stand for Non-REM, with REM sleep meaning 'rapid eye movement'. NREM1 is the lightest stage of sleep. You might not even think you've dozed off. It can last only a few minutes. Dr. Dawson says he's heard it described as if someone dozing off in a recliner in front of the TV wakes up when the TV is shut off, saying, 'I was watching that.' In NREM2, the heart rate and breathing slow. The body can move a bit but the brain appears to have less activity happening. Why is light sleep important? REM sleep gets a lot of attention for its contributions to health, but you still need light sleep as part of a healthy sleep cycle. Sleep researchers find specific neural activity patterns occur during the NREM2 sleep stage. The ones referred to as 'sleep spindles' and 'K-complexes' indicate patterns involved with brain processes, including learning, memory, and stimulus processing, according to research. When does light sleep occur? The NREM1 stage of sleep is transitional from wake to sleep. 'It's fairly junky,' says Dr. Dawson. 'If you had a lot of that, you wouldn't feel good.' It usually makes up about five percent of a night's sleep. That's followed by NREM2 sleep which makes up about 50% of one's sleep. It's estimated that someone goes through four or five sleep cycles each night of about 90 minutes each. Those include REM and NREM sleep and bouts of waking up—even if you don't recall those wakeups. Sticking to a regular sleep schedule can help you get the light sleep and deep sleep you need. What happens during light sleep Light sleep or (Non-REM sleep) plays a role in the sleep cycle helping the body move into deep sleep modes. You usually spend more time in 'light sleep' in the early part of the night. 1. Heart rate slows The heart rate decreases during N1 and N2 sleep. This is likely how wearables make predictions that you're in those 'light stages' of sleep since they're usually monitoring your heart rate. Heart rate variability tends to be greater during REM sleep. 2. Brain waves slow During light sleep, your body can move but the brain looks like it's at rest, says Dr. Dawson. Sleep researchers look at brain activity in 30-second chunks of time, he says. During light sleep, we see these large, high amplitude, slow oscillations of brain activity. In REM sleep, the brain looks 'awake' and active while the body is immobile. 3. Body temperature drops The body temperature decreases as you move into 'light sleep' but recent research says the brain temperature also falls during this time. It's suspected that this temperature drop helps the body save energy where it can before the brain temperature increases during REM sleep. 4. Eye movement stops Since REM sleep involves 'rapid eye movement' — often side to side behind the eyelids — it's worth noting that during NREM2 sleep, eye movement stops. REM is the stage of sleep in which we dream, but you're unlikely to dream during light sleep. How much light sleep should we get? In general, about 50% of one's overall sleep should be 'light' sleep, which we're calling NREM1 and NREM2 sleep stages. That being said, everyone's needs differ and vary according to their ages. 'The amount of deep sleep your body goes into tends to reflect your sleep need,' says Dr. Dawson. 'It's a homeostatic process. So basically, your brain knows how much it needs, and if it needs more, it will do more [deep sleep]. And if it needs less, it'll do less.' Simply put, you can't do much to control which stages of sleep your body goes between each night. What happens if you spend too much time in light sleep? If you spend too much time in light sleep—instead of deep sleep—you're not going to feel good. You might never feel 'rested' even if you're in bed for the recommended seven to nine hours of sleep a night. You cycle through all of these sleep stages throughout the night, including briefly waking up between them, which is perfectly normal. 'While transitioning between REM and NonREM sleep and back, you might see some of the NREM1 sleep in there as well,' says Dr. Dawson. However, an indication that you're not cycling through the stages properly and spending too much time in light sleep is daytime irritability, fatigue, mood swings and sleep deprivation. Improving your sleep hygiene and maintaining a consistent sleep schedule, as well as aiming for seven to nine hours of sleep a night, will help you experience full and healthy sleep cycles

The largest Mars rock on Earth is up for auction in NYC — it could be yours for $4 million (or more)
The largest Mars rock on Earth is up for auction in NYC — it could be yours for $4 million (or more)

Yahoo

time13 hours ago

  • Yahoo

The largest Mars rock on Earth is up for auction in NYC — it could be yours for $4 million (or more)

When you buy through links on our articles, Future and its syndication partners may earn a commission. NEW YORK CITY — Tucked away in a building on the corner of 72nd Street and York Avenue in Lenox Hill, an extraterrestrial marvel sits sturdily on a mirrored pedestal. It's the largest Mars rock on planet Earth — and it turns out its 54-pound (25-kilogram), ashy, terracotta structure isn't as priceless as you'd expect. This Mars rock is up for auction at Sotheby's in New York City this week, which is why it's currently on display in the Upper East Side. As of now, it's expected to sell for between $2 million and $4 million, but it could very well sell for far more. "At the end of the day, it's the bidders who tell us what things are worth, not me, not anyone else. The estimates are just there to give people an indication," Cassandra Hatton, the vice chairman of science and natural history at Sotheby's, told "Last summer, I sold the Stegosaurus 'Apex.' For the Stegosaurus, the estimate was [$4 million to $6 million], and it sold for $44.6 million." Hatton said she first heard about the Mars rock (formally called NWA 16788) about a year ago from the rock's seller, who learned about the specimen from a meteorite hunter in Africa. ("NWA" is short for "Northwest Africa," the region where the rock was found.) "When they first acquired it, they called me right away," she said. "I said, 'All right, we have got to get it tested; we need to have it published in the meteoritical bulletin." As such, the seller went through several formal steps to document and test the rock as well as have it published upon. That testing process was rather rigorous for a few reasons. First of all, unlike lunar meteorite candidates, possible Mars meteorites have no pristine samples to be compared with. During the Apollo years, astronauts physically brought hundreds of pounds of moon rocks back to Earth, and those samples still serve as the isotopic reference point for determining whether a rock is indeed a lunar meteorite or just a peculiar piece of our planet. Astronauts haven't visited the Red Planet yet, so of course we don't have any Mars rock reference points — and though there is still talk of a possible Mars Sample Return program to bring home samples that NASA's Perseverance rover has been collecting from the Martian surface over the last few years, the timeline on that is as unclear as can be. It may even be cancelled, if the Trump administration's fiscal year 2026 budget proposal is passed as-is by Congress. Alas, the testing team had to come up with a workaround, and they did so by considering a few clues we have about what a Martian meteorite should look like. How do you verify a Mars rock? Imagine something huge impacting another world — in this case, an asteroid striking Mars long ago. As a consequence of that impact, there'd have been a bunch of stuff that shot upward during the crash — chunks of the Martian surface, particles of dust, and who knows what else. If any of that debris managed to shoot far enough to exit the Martian atmosphere, it'd have been possible for those travelers to reach Earth, travel through our atmosphere and land somewhere on our world. Because of this journey, Martian atmospheric data is important to consider when verifying whether something is a Mars rock — and thanks to the twin Viking landers that NASA sent to Mars in the '70s, scientists indeed have that atmospheric data. "You'll find little gas pockets in a lot of Martian meteorites," Hatton said. "We've cut those pockets open and compared the gas in those pockets to the gas that we analyzed from the Martian atmosphere — and if they match up, then we know that rock came from Mars." The next step has to do with the general composition of a meteorite. Typically, Hatton explains, meteorites contain what's known as "Maskelynite" glass, which forms as the result of the big crash that forced the meteorite off the surface of a world. "That's layer one," she explained. "Is there Maskelynite glass in this rock? If it is, it's a meteorite, because we only find that in meteorites." "Then it's very easy," she said. "What's the [chemical makeup] of this rock? Compare it to a [Mars] rock that we have that we found in the desert — if they match, then boom. That's Martian." The market price of Mars Usually, pricing rare items that come into Sotheby's isn't too much of an ordeal. For instance, if you're trying to figure out the value of an antique necklace, you can look at the value of the stones and metals in the piece, think about the fame of the designer and look into how much other items from the same era cost. Similar thought processes help auction houses estimate the value of objects like photographs, autographs, technology and art. "If I have a Picasso, I just compare it to the other Picassos," Hatton said. "Is it bigger, blue or older? Is it depicting Marie-Thérèse [Walter, a French model and muse of the artist]?" The same can't be said for rare scientific items. "I really have to think about the context, the background, the history, the rarity, the significance, and then I put an estimate on it," Hatton said. In the case of the Mars rock soon to be up for auction, she said the cost estimate of $2 million to $4 million came from the fact that it's the biggest Red Planet meteorite we have. For context, other, smaller Martian meteorites have sold for between $20,000 and $80,000, Hatton said, but she emphasized that bigger isn't exactly always better in the auction world. Sometimes, the bigger you get, the more likely it is for the bidding price to go down. "How many people could fit a 100-foot long sauropod in their house? Nobody, not even every museum could fit a sauropod that's 100 feet long," she said, as an example. "So, then your market gets much smaller. That's also something to consider: Who could maintain this? Who could have it in their home?" But that reasoning doesn't really apply in this case, because NWA 16788 — though huge for a Mars meteorite — can still fit into an average-sized backpack. So, Hatton calls the maximum $4 million figure on the Mars rock at hand a conservative estimate. But beyond all the statistics, there's also an unusual aesthetic value to consider with NWA 16788. "It also looks just like the surface of the Red Planet," she said. "Most other Martian meteorites that we find are really small, thin slices, and when you first look at them, you would never guess that they're Martian." "This one has really amazing fusion crust on the outside," she added. "If you look closely at it, you could almost use it as a film set for a movie about Mars — put little teeny people on there, because you could see the grooves and the ripples and the mountains on it." But, well, does this belong in a museum? When asked why she believes a specimen so brilliant it can be called the "largest Mars rock on Earth" should be auctioned off to a collector rather than donated to a public museum or scientific institution — it's no secret that many would argue for the latter — Hatton looked back at the history of museums as a whole. "If we didn't have personal private collectors, we would not have museums," she said. "Many of my clients give the things to museums or loan them to museums." She also explained that having to pay for something may make one more likely to care for their property: "If it's precious to you monetarily, you take care of it. Having this value tied to the object helps ensure that it is taken care of." "There are some museums that don't have the funding and the staff to properly care for objects," she added. "So, a lot of times, the private collectors are saving these objects. They're making sure that they're taken care of." Hatton also pointed out that many major collectors loan their items to museums, and as part of that loan, offer extra money to have staff take care of the items or fund postdoctoral researchers to study them. Related Stories: — Ouch! Carlo Rambaldi's original screen-used 'E.T.' model might reach $1 million at Sotheby's auction — The secret of why Mars grew cold and dry may be locked away in its rocks — Space auction: Sally Ride memorabilia collection sells for $145,000 "Part of what I am hoping, and I think I am achieving with a lot of these sales, is raising the profile of all of these different types of space, sci-tech and natural history objects, and helping people understand how important they are." And though Hatton doesn't allow herself to place her own personal value estimate on the Mars rock — or anything she's auctioning off, for that matter — she highlighted that auctions aren't always purely about the items themselves. "I've had people cry after they've bought things at an auction. I've cried when I've had people contact me and say, 'will you sell this?' because there [are] your white whales — your grails that you hope maybe one day you'll get to see. I always root for people to get what they want, because it's not just about the object. They're kind of chasing a dream." Solve the daily Crossword

New pocket-size model of ALS 'breathes and flows like human tissue'
New pocket-size model of ALS 'breathes and flows like human tissue'

Yahoo

time13 hours ago

  • Yahoo

New pocket-size model of ALS 'breathes and flows like human tissue'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists invented a pocket-sized model of the most common form of amyotrophic lateral sclerosis (ALS). The "disease-on-a-chip," made using stem cells, could pave the way for new treatments for the progressive condition, the researchers say. In ALS, the brain and spinal-cord cells that control voluntary muscle movements — known as motor neurons — break down and die. As a result, the brain can no longer send signals to the muscles, leading to symptoms of muscle weakness and paralysis, as well as trouble speaking, swallowing and breathing. In a study published July 3 in the journal Cell Stem Cell, scientists unveiled a new model of sporadic ALS, which accounts for up to 95% of ALS cases and occurs spontaneously without a clear genetic cause or known family history. The platform mimics the early stages of the disease and does so more accurately than previous lab models could. To build the model, researchers collected blood cells from young-onset ALS patients, all under age 45, and healthy male donors, whose cells were used to build a "healthy" chip, for comparison. The blood cells were reprogrammed into induced pluripotent stem cells (iPSCs), which can be turned into any type of cell in the body. The stem cells were then turned into spinal motor neurons, which normally enable movement and degenerate in ALS. A second set of iPSCs was turned into cells similar to the blood-brain barrier (BBB), which helps prevent harmful germs and toxins from entering the brain. The spinal neurons were seeded into one channel within the chip, while the BBB cells were placed in another channel. Separated by a porous membrane, the two chambers were then perfused with nutrient-rich fluid to mimic continuous blood flow. The resulting "spinal-cord chip" maintained both sets of cells for up to about a month and helped the neurons mature beyond what models without flowing fluids allowed. Related: Scientists invent 1st 'vagina-on-a-chip' The basic chip was developed by the biotech company Emulate and then customized for use in the ALS model by researchers at Cedars-Sinai in Los Angeles, California. Earlier models of ALS also used iPSC-derived neurons and structures mimicking those found in the brain, but they lacked dynamic flow, making it hard to capture specific aspects of the disease. "Our previous models were static, like a dish of cells sitting still, and couldn't differentiate between ALS and healthy cells," said study co-author Clive Svendsen, executive director of the Board of Governors Regenerative Medicine Institute at Cedars-Sinai. "We recreated an in vitro [lab dish] environment that breathes and flows like human tissue, which allowed us to detect early differences in ALS neurons." Other experts agree. "Unlike most lab models that lack vascular features and dynamic flow, this chip improves neuron health and maturation," said Dr. Kimberly Idoko, a board-certified neurologist and medical director at Everwell Neuro, who was not involved in the study. "It captures early disease signals in ALS that are often hard to detect," Idoko told Live Science in an email. With their ALS and healthy chips in hand, the researchers analyzed the activity of more than 10,000 genes across all the cells. One of the most striking findings was abnormal glutamate signaling in the neurons within the ALS chip. Glutamate is a major excitatory chemical messenger, meaning it makes neurons more likely to fire and send on a message to additional neurons; its counterpart, GABA, is inhibitory. The team saw increased activity in glutamate receptor genes and decreased activity in GABA receptor genes in the motor neurons, compared to the healthy chip. "We were intrigued to find this increase in glutamate activity," Svendsen said. "Although there was no visible neuron death, we hypothesize this hyperexcitability could trigger degeneration at later stages." RELATED STORIES —Body parts grown in the lab —Scientists developing new 'heart-on-a-chip' —Could mini space-grown organs be our 'cancer moonshot'? This finding aligns with long-standing theories about ALS, which suggest that boosted glutamate signalling contributes to nerve damage. It also corresponds with the mechanism of the ALS drug riluzole, which blocks glutamate. The new chip adds to the evidence for this mechanism and could help reveal how it manifests in the earliest stages, before symptoms would be evident in a patient, Svendsen suggested. While Idoko praised the model, she noted it lacks glial cells — additional nervous-system cells involved in ALS — and doesn't capture the late-stage degeneration seen in ALS. "However, a model like this could conceivably be useful for early drug screening, to study how a drug might cross a barrier similar to the blood-brain barrier, in preparation for animal or human studies," she said. The team is now working toward maintaining the cells in the model for up to 100 days. They also would like to incorporate other cell types, like muscle cells, to fully mimic ALS progression. As motor neurons die off in the disease, muscle cells also waste away. "Our goal is now to build models where more neurons die, so we can better map disease pathways and test treatments in a human-like setting," Svendsen said. For now, the chip offers a window into ALS's earliest molecular changes and a tool to figure out how to detect and slow the disease before irreversible damage occurs. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store