logo
NASA reports plane-sized asteroid nearing earth

NASA reports plane-sized asteroid nearing earth

Ammon6 days ago
Ammon News - NASA is monitoring an airplane-sized asteroid that is expected to zoom past the Earth on July 28 at a zippy 46,908 miles per hour.
The space rock—known as 2025 OW—is estimated to be about 210 feet across and will make its closest approach to our next Monday, at a distance of around 393,000 miles, according to NASA's Jet Propulsion Laboratory (JPL).
But 2025 OW isn't the only asteroid approaching us in the coming days. NASA is also tracking another airplane-sized space rock known as 2025 OX, which is estimated to be about 110 feet across, and will fly past the Earth on July 26 at a distance of 2,810,000 miles.
Three more aircraft-sized space rocks are also expected to pass by Earth in the next few weeks.
On July 28, asteroid 2018 BE5 will make its closest approach at a distance of just 2,580,000 miles; 2025 OR will pass within 3,040,000 miles on July 31; and, next month, 2019 CO1 will get within 4,240,000 miles of our home.
According to NASA, asteroids are inactive bodies made of all the rocky, dusty and metallic materials left behind from the formation of our solar system. They are mainly concentrated within the main asteroid belt, orbiting around the sun between the paths of Mars and Jupiter, though some may end up in the inner solar system.
Asteroids of various sizes can pose different levels of threat to our planet. Small ones around 30 feet impact Earth about once in a decade, causing a very bright fireball, and a strong sonic boom. They may sometimes also break nearby windows.
Space rocks measuring 160 feet and over can cause local devastation and leave a crater. Thankfully, they only impact Earth about in 1,000 years.
Depending on the impact location, larger space rocks—those that measure in at over 500 feet across—can cause deaths across populated metro areas and states, says NASA. Fortunately, they only hit the Earth around every 20,000 years.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Physicists discover new cosmic mechanism behind lightning formation
Physicists discover new cosmic mechanism behind lightning formation

Ammon

time5 hours ago

  • Ammon

Physicists discover new cosmic mechanism behind lightning formation

Ammon News - A significant breakthrough by Pennsylvania State University researchers, led by Victor Pasko, has provided the first quantitative explanation for precisely how lightning initiates. This groundbreaking work has revealed the powerful chain reaction that triggers lightning. In the study published on Monday in the Journal of Geophysical Research, the authors described how they determined strong electric fields in thunderclouds accelerate electrons that crash into molecules like nitrogen and oxygen, producing X-rays and initiating a deluge of additional electrons and high-energy photons, the perfect storm from which lightning bolts are born. 'Our findings provide the first precise, quantitative explanation for how lightning initiates in nature," Pasko said. "It connects the dots between X-rays, electric fields and the physics of electron avalanches." The team used mathematical modelling to confirm and explain field observations of photoelectric phenomena in Earth's atmosphere - when relativistic energy electrons, which are seeded by cosmic rays entering the atmosphere from outer space, multiply in thunderstorm electric fields and emit brief high-energy photon bursts. This phenomenon, known as a terrestrial gamma-ray flash, comprises the invisible, naturally occurring bursts of X-rays and accompanying radio emissions. 'By simulating conditions with our model that replicated the conditions observed in the field, we offered a complete explanation for the X-rays and radio emissions that are present within thunderclouds,' Pasko said. 'We demonstrated how electrons, accelerated by strong electric fields in thunderclouds, produce X-rays as they collide with air molecules like nitrogen and oxygen, and create an avalanche of electrons that produce high-energy photons that initiate lightning.' Zaid Pervez, a doctoral student in electrical engineering, used the model to match field observations - collected by other research groups using ground-based sensors, satellites and high-altitude spy planes - to the conditions in the simulated thunderclouds. 'We explained how photoelectric events occur, what conditions need to be in thunderclouds to initiate the cascade of electrons, and what is causing the wide variety of radio signals that we observe in clouds all prior to a lightning strike,' Pervez said. 'To confirm our explanation on lightning initiation, I compared our results to previous modelling, observation studies and my own work on a type of lightning called compact intercloud discharges, which usually occur in small, localized regions in thunderclouds.' Published by Pasko and his collaborators in 2023, the model, Photoelectric Feedback Discharge, simulates physical conditions in which a lightning bolt is likely to originate. The equations used to create the model are available in the paper for other researchers to use in their own work. In addition to uncovering lightning initiation, the researchers explained why terrestrial gamma-ray flashes are often produced without flashes of light and radio bursts, which are familiar signatures of lightning during stormy weather. 'In our modelling, the high-energy X-rays produced by relativistic electron avalanches generate new seed electrons driven by the photoelectric effect in air, rapidly amplifying these avalanches,' Pasko said. He added, 'In addition to being produced in very compact volumes, this runaway chain reaction can occur with highly variable strength, often leading to detectable levels of X-rays, while accompanied by very weak optical and radio emissions. This explains why these gamma-ray flashes can emerge from source regions that appear optically dim and radio silent.' WAM

Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains
Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains

Ammon

time2 days ago

  • Ammon

Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains

Ammon News - Humanin is a small, mitochondria-derived peptide consisting of 24 amino acids, first identified in 2001. It has attracted significant attention within the scientific community due to its unique origin and diverse biological activities. Emerging research suggests that Humanin might serve as a pivotal molecule linking mitochondrial function with cellular survival pathways. This article explores the current understanding of Humanin properties and speculates on their prospective uses across various research domains, focusing on their biochemical attributes and the implications of their activity in cellular physiology, cellular aging, metabolic regulation, neurodegeneration, and beyond. Origin and Biochemical Properties of Humanin Humanin is encoded within the mitochondrial 16S ribosomal RNA gene, marking it as a mitochondria-derived peptide (MDP), a class of peptides believed to mediate inter-organelle communication. This origin positions Humanin uniquely as a potential signaling molecule that may support cellular homeostasis. The peptide's sequence is highly conserved across species, indicating an evolutionarily preserved function. Biochemically, Humanin is characterized by its amphipathic nature, allowing it to interact with both hydrophilic and hydrophobic environments. This feature may enable the peptide to cross cellular membranes and interact with intracellular targets, thereby modulating various signaling cascades. Humanin's interaction with specific receptors, including formyl peptide receptor-like 1 (FPRL1) and the ciliary neurotrophic factor receptor (CNTFR) complex, suggests it may trigger intracellular pathways involved in survival and metabolic regulation. Humanin in Mitochondrial Signaling and Cellular Stress Response Mitochondria are crucial regulators of cellular metabolism and apoptotic signaling. It has been hypothesized that Humanin may act as a mitochondrial stress signal, released under conditions of mitochondrial dysfunction. This theory posits that the peptide might serve as an adaptive response element, modulating cell fate decisions during stress. In research contexts, Humanin's possible role may be further investigated as a mediator of mitochondrial quality control and biogenesis. Studies suggest that the peptide might support mitochondrial dynamics by interacting with key proteins involved in fission and fusion processes. These processes are essential for maintaining mitochondrial integrity and function. Given the centrality of mitochondria in numerous diseases and cellular aging, Humanin may serve as a valuable probe for understanding mitochondrial contributions to pathophysiology and organismal longevity. Potential in cellular aging and Longevity Research Cellular aging is characterized by the progressive decline of cellular and organismal function, with mitochondrial dysfunction playing a prominent role. The discovery of Humanin coincided with investigations into the mitochondrial theory of cellular aging, leading to hypotheses that the peptide might modulate age-associated pathways. Research indicates that Humanin levels may decline over time, suggesting a correlation between peptide abundance and organismal integrity. It has been theorized that Humanin may support cellular resistance to oxidative stress and apoptotic stimuli, both of which escalate during cellular aging. Investigations suggest that Humanin may support the activity of longevity regulators, such as AMP-activated protein kinase (AMPK) and sirtuin, thereby contributing to metabolic homeostasis. Moreover, Humanin appears to regulate autophagy, a crucial mechanism for cellular waste removal and recycling. Given that defective autophagy is implicated in age-related diseases, the peptide might serve as a tool for probing autophagic processes and their manipulation to delay cellular aging phenotypes. Humanin's Implications in Neurodegenerative Disease Research Neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, involve complex pathologies where mitochondrial dysfunction, oxidative stress, and apoptosis converge. It has been proposed that Humanin might play a neuroprotective role by interfering with apoptotic pathways activated during neuronal stress. The peptide's interaction with receptors, such as FPRL1, and its support of intracellular signaling pathways may modulate inflammatory responses and cellular survival in neural tissue. Research suggests that Humanin may mitigate the support of toxic protein aggregates, a hallmark of many neurodegenerative conditions, by supporting mitochondrial resilience and reducing oxidative stress. Furthermore, Humanin's potential role in regulating neuroinflammation offers intriguing possibilities for studying the intersection between mitochondrial signals and immune responses within the central nervous system. The peptide may be utilized as a molecular tool in experimental models to dissect pathways implicated in neuronal survival and degeneration. Metabolic Research and Humanin Peptide Metabolic disorders, including diabetes and obesity, have increasingly been linked to mitochondrial dysfunction and impaired inter-organ communication. It has been hypothesized that Humanin may play a role in regulating glucose and lipid metabolism, thereby supporting systemic metabolic homeostasis. Some investigations suggest that Humanin may modulate insulin sensitivity and mitochondrial bioenergetics, supporting energy balance at the cellular and organismal levels. Studies suggest that the peptide may interact with signaling networks, such as the PI3K/Akt pathway, which plays a central role in metabolic control. Given its mitochondrial origin, Humanin may serve as a key signaling molecule in the crosstalk between mitochondria and other cellular organelles, such as the endoplasmic reticulum, further supporting metabolic processes. These properties position Humanin as a promising candidate for research into the molecular underpinnings of metabolic diseases and the development of novel metabolic modulators. Cardiovascular and Vascular Research Potential Emerging data indicate that Humanin might exert support on vascular cells and cardiovascular function. The peptide's interaction with endothelial cells suggests a role in regulating vascular tone and inflammatory responses within blood vessels. It is theorized that Humanin might support mitochondrial function in cardiomyocytes and vascular smooth muscle cells, possibly modulating cellular survival under ischemic or oxidative stress conditions. These properties have prompted investigations into the peptide's potential to support mechanisms underlying atherosclerosis and other vascular pathologies. As mitochondrial dysfunction is increasingly studied as a contributor to the progression of cardiovascular disease, Humanin may serve as a novel research molecule for dissecting mitochondrial involvement in vascular integrity and disease. Future Directions and Research Challenges Despite growing interest, much remains speculative about the full scope of Humanin's possible roles and mechanisms. It has been proposed that further elucidation of Humanin's receptor interactions, signaling pathways, and intracellular targets is necessary to unlock its research potential fully. Technological advances in mitochondrial biology, peptide synthesis, and receptor pharmacology may facilitate the development of experimental tools to explore Humanin's activities in greater detail. Additionally, the integration of omics technologies, such as proteomics and metabolomics, may provide comprehensive insights into the peptide's support on cellular networks. Conclusion Humanin represents a fascinating intersection of mitochondrial biology, cellular signaling, and organismal physiology. Its properties as a mitochondria-derived peptide position it uniquely as a molecule of interest across multiple research domains, including cellular aging, neurodegeneration, metabolism, cardiovascular science, and immunology. While many aspects of Humanin's function remain hypothetical, ongoing investigations suggest it might serve as a crucial mediator of mitochondrial communication and cellular resilience. Continued exploration of this peptide may not only deepen understanding of mitochondrial roles in science and disease but also unveil novel pathways for scientific inquiry. Visit this website for the best research compounds.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store