Latest news with #Chandra


Time of India
15 hours ago
- Science
- Time of India
Rare space object blasts X-rays and radio waves every 44 minutes
Astronomers have detected a rare space object that emits powerful bursts of energy in both radio and X-ray wavelengths every 44 minutes. The object, known as ASKAP J1832-0911 , lies around 15,000 light-years away in the Milky Way and is the first of its kind to show such behaviour across both ends of the electromagnetic spectrum. Long-period transients (LPTs) a recently identified class of cosmic bodies typically emit brief pulses of radio waves separated by hours or minutes. But until now, none had been observed producing X-ray emissions . ASKAP J1832-0911 has changed that, emitting energy levels far beyond anything previously recorded in this category. 'This object is unlike anything we have seen before,' said Dr Ziteng (Andy) Wang, lead author of the study and a researcher at Curtin University, part of the International Centre for Radio Astronomy Research (ICRAR). The findings were published this week in *Nature*. A lucky observation by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Giao dịch CFD với công nghệ và tốc độ tốt hơn IC Markets Đăng ký Undo ASKAP J1832-0911 was initially detected via radio signals by the Australian Square Kilometre Array Pathfinder (ASKAP), operated by CSIRO on Wajarri Yamaji Country. By sheer coincidence, NASA's Chandra X-ray Observatory happened to be surveying the same region of sky at the same time, enabling astronomers to match the radio pulses with bursts of X-ray radiation. 'Discovering that ASKAP J1832-0911 was emitting X-rays felt like finding a needle in a haystack,' said Dr Wang. 'The ASKAP telescope has a broad view of the sky, but Chandra focuses on a much smaller region, so the overlap was a matter of great fortune.' Since the first LPT was discovered in 2022, around ten more have been identified. But none has demonstrated behaviour as intense and regular as ASKAP J1832-0911. New Physics on the horizon? Astronomers suspect ASKAP J1832-0911 could be either an ageing magnetar a type of dead star with extremely strong magnetic fields or a binary system containing a magnetised white dwarf, the remnant of a low-mass star. 'ASKAP J1831-0911 could be a magnetar, or it could be a pair of stars in a binary system where one is a highly magnetised white dwarf,' Wang explained. 'However, even those theories do not fully explain what we are observing. This discovery could indicate a new type of physics or new models of stellar evolution.' A doorway to more discoveries According to Professor Nanda Rea from the Institute of Space Science (ICE-CSIC) and the Institute of Space Studies of Catalonia (IEEC), the discovery suggests ASKAP J1832-0911 may be the first of many similar objects. 'Finding one such object hints at the existence of many more,' Rea said. 'The discovery of its transient X-ray emission opens fresh insights into their mysterious nature.'
Yahoo
18 hours ago
- General
- Yahoo
Astronomers find startling pulsing object in Milky Way: 'Unlike anything we have seen'
Astronomers recently discovered a never-before-seen celestial phenomenon hiding in our own cosmic backyard. The mystery object, located just a short 15,000 light-years from Earth in our Milky Way galaxy, revealed itself to an international team of scientists when it was observed emitting startling pulses. What made the pulses puzzling to the astronomers was that they came in the form of both radio waves and X-rays. Most intriguing: the cycle occurred like clockwork for two minutes at a time every 44 minutes. The discovery marks the first time that such objects, called long-period transients, have been detected in X-rays, the team said in a press release announcing the findings. 'This object is unlike anything we have seen before,' Ziteng Andy Wang, an astronomer at Curtin University in Australia who led the research, said in a statement. The objects, which emit radio pulses occurring minutes or hours apart, are a relatively recent discovery – with just 10 being identified since 2022, the team said. While astronomers are so far unable to explain the origin of the mystifying signals and why they occur at unusual intervals, the team hopes their findings provide some insights. Milky Way photos: Stunning images of our galaxy making itself visible around the globe The Milky Way is our home galaxy with a disc of stars that spans more than 100,000 light-years. Because it appears as a rotating disc curving out from a dense central region, the Milky Way is known as a spiral galaxy. Our planet itself is located along one of the galaxy's spiral arms, about halfway from the center, according to NASA. The Milky Way sits in a cosmic neighborhood called the Local Group that includes more than 50 other galaxies. Those galaxies can be as small as a dwarf galaxy with up to only a few billion stars, or as large as Andromeda, our nearest large galactic neighbor. The Milky Way got its name because from our perspective on Earth, it appears as a faint band of light stretching across the entire sky. The team discovered the object, known as ASKAP J1832-0911, in the Milky Way by using a radio telescope in Australia. The astronomers, all from the International Centre for Radio Astronomy Research, then correlated the radio signals with X-ray pulses detected by NASA's space telescope, the Chandra X-ray Observatory. The Australian radio telescope has a wide field view of the night sky, while Chandra observes only a fraction of it. For that reason, the astronomers say it was fortunate that Chandra was coincidentally observing the same area of the night sky at the same time. 'Discovering that ASKAP J1832-0911 was emitting X-rays felt like finding a needle in a haystack,' Wang said in a statement. Astronomy: Fast radio burst detected in 'dead' galaxy raises questions about mysterious signals It's possible the celestial object could be the core of a dead star, known as a magnetar. With their extremely strong magnetic fields, these neutron stars – small, dense collapsed cores of supergiant stars – are capable of producing the powerful bursts of energy that have been observed for years. The object could also be a pair of stars in a binary system in which one of them is a highly-magnetized white dwarf star at the end of its evolution, the team said. But Wang cautioned that neither of those theories fully explains what his team observed. "This discovery could indicate a new type of physics or new models of stellar evolution," Wang said in a statement. Fortunately, finding one object using both X-rays and radio waves hints at the existence of many more, according to the researchers. The findings were published Wednesday, May 28, in the journal Nature. Eric Lagatta is the Space Connect reporter for the USA TODAY Network. Reach him at elagatta@ This article originally appeared on USA TODAY: Strange pulsing object spotted in Milky Way: Here's what it could be
Yahoo
19 hours ago
- General
- Yahoo
Scientists Are Stumped by Mysterious Pulsing 'Star'
ASKAP J1832 (in circle) captured by th Chandra X-Ray Observatory Credit - X-ray: NASA/CXC/ICRAR, Curtin Univ./Z. Wang et al.; Infrared: NASA/JPL/CalTech/IPAC; Radio: SARAO/MeerKAT; Image processing: NASA/CXC/SAO/N. Wolk Something strange is going on 15,000 light years from Earth. Out at that distant remove, somewhere in the constellation Scutum, an unexplained body is semaphoring into space, blinking in both X-ray and radio frequencies once every 44 minutes in a way never seen by astronomers before. The object could be a white dwarf—an Earth-sized husk that remains after a star has exhausted its nuclear fuel. Or not. It could also be a magnetar—a neutron star with an exceedingly powerful magnetic field. Unless it's not that either. 'Astronomers have looked at countless stars with all kinds of telescopes and we've never seen one that acts this way,' said astronomer Ziteng Wang of Curtin University in Australia, in a statement that accompanied the May 28 release of a paper in Nature describing the object, for which he was lead author. 'It's thrilling to see a new type of behavior for stars.' So what exactly is the mysterious body—which goes by the technical handle ASKAP J1832—and how common is this species of object? ASKAP J1832 is by no means unique in the universe in sending out energy in steady flashes. Pulsars—rapidly spinning neutron stars—do too. But pulsars flash much faster than ASKAP J1832 does, on the order of milliseconds to seconds. In 2022, astronomers discovered a type of object known as a long-period transient, which, like ASKAP J1832, sends out flashes of radio waves on the order of tens of minutes. So far 10 such bodies have been found, but none identical to ASKAP J1832, which is the first to emit X-rays too. What's more, ASKAP J1832's emissions have changed over time. During one observation with NASA's orbiting Chandra X-Ray Observatory in February 2024, the object was prodigiously producing both X-rays and radio waves. During a follow-up observation six months later, the radio waves were 1,000 times fainter and no X-rays were detected. That was a puzzle. 'We looked at several different possibilities involving neutron stars and white dwarfs, either in isolation or with companion stars,' said co-author Nanda Rea of the Institute of Space Sciences in Barcelona, Spain, in a statement. 'So far nothing exactly matches up, but some ideas work better than others.' One of those ideas is the magnetar, but that doesn't fit precisely, due to ASKAP J1832's bright and variable radio emissions. The white dwarf remains a possibility, however in order to produce the amount of energy it does, ASKAP J1832 would have to be orbiting another body in a formation known as a binary system, and so far that second body hasn't been detected. Viewed from Earth, ASKAP J1832 appears to be located in a supernova remnant, a cloud of hot gas and high energy particles that remains after an aging star meets its explosive end. But the authors of the paper concluded that the remnant merely lies in the foreground of the observational field with ASKAP J1832 in the background, the way an earthly cloud can drift in the path of the sun. So for now, the object remains a riddle—one that will be investigated further. 'Finding a mystery like this isn't frustrating,' said co-author Tong Bao of the Italian National Institute for Astrophysics, in a statement. 'It's what makes science exciting.' Write to Jeffrey Kluger at


Time of India
a day ago
- Science
- Time of India
Delhi University launches course on Sanskrit and Digital Technology to teach coding basics
Live Events (You can now subscribe to our (You can now subscribe to our Economic Times WhatsApp channel Amid ongoing debates about the relevance of Sanskrit in modern computing, Delhi University (DU) has introduced a course linking the classical language with digital technology . The Department of Sanskrit is offering an elective course titled Computer Applications for Sanskrit to students pursuing the subject across DU course, classified as a discipline-specific elective, introduces foundational computing skills tailored to the use of Sanskrit. It is designed to help students engage with tools and methods used in computational linguistics, including web development using HTML, Unicode typing in Devanagari script, optical character recognition (OCR), and text digitisation and Chandra, faculty member and course designer, said the course aims to demonstrate the integration of Sanskrit with technology. "We have developed various tools like grammar checkers, speech-to-text applications, and a Sanskrit research database. Through this course, students will learn the coding behind such tools," he curriculum focuses on web-based tool development, Devanagari input systems, multimedia basics, and e-learning concepts for Sanskrit. While it does not offer advanced programming training, it covers basic coding principles that can be applied to build digital platforms for the to fourth-semester students with working knowledge of Sanskrit, the course incorporates tools created by DU's Computational Linguistics Group and includes references from software theory and logic. A dedicated unit covers OCR for Indian languages, offering insights into available technologies and their applications in preserving ancient course objective, as outlined in the syllabus, is to introduce students to current research in Sanskrit computing and highlight tools developed with government and private funding. The expected outcome is to provide students with an understanding of computational linguistics in Sanskrit and the potential of digital tools to aid language learning and a recent event, Delhi's Chief Minister Rekha Gupta echoed support for Sanskrit's use in coding. "Even Nasa scientists have written about Sanskrit being a scientific language. It is the most computer-friendly language," she said during the conclusion of a Sanskrit learning in 2014, DU's Computational Linguistics Research and Development for Sanskrit initiative has been focused on developing digital content, language analysis systems, and searchable databases of Sanskrit literature. The department also organises summer programmes for students from other institutions to explore the intersection of Sanskrit and technology (With TOI inputs)


The Advertiser
2 days ago
- Science
- The Advertiser
Astronomers scrutinise a star behaving unlike any other
Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 9.5 trillion kilometres. The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Perth's Curtin University, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesised companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behaviour for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its crazy bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said. Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 9.5 trillion kilometres. The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Perth's Curtin University, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesised companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behaviour for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its crazy bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said. Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 9.5 trillion kilometres. The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Perth's Curtin University, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesised companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behaviour for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its crazy bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said. Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 9.5 trillion kilometres. The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Perth's Curtin University, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesised companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behaviour for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its crazy bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said.