logo
#

Latest news with #CharlieHoy

Scientists measure largest ever collision of two black holes
Scientists measure largest ever collision of two black holes

The Independent

time4 days ago

  • Science
  • The Independent

Scientists measure largest ever collision of two black holes

Two black holes have collided far beyond the distant edge of the Milky Way, creating the biggest merger ever recorded by gravitational wave detectors. The two phenomena, each more than 100 times the mass of the sun, had been circling each other before they violently collided about 10 billion light years from Earth. Scientists at the Ligo Hanford and Livingston Observatories detected ripples in space-time from the collision just before 2pm UK time on 23 November 2023, when the two US-based detectors in Washington and Louisiana twitched at the same time. Alongside their enormous masses, the signal, dubbed GW231123 after its discovery date, also showed the black holes spinning rapidly, according to researchers. 'This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation,' said Professor Mark Hannam, from Cardiff University and a member of the Ligo Scientific Collaboration. Gravitational-wave observatories have recorded around 300 black hole mergers. Prior to GW231123, the heaviest merger detected was GW190521, whose combined mass was 140 times that of the sun. The latest merger produced a black hole up to 265 times more massive than the sun. 'The black holes appear to be spinning very rapidly — near the limit allowed by Einstein's theory of general relativity,' said Dr Charlie Hoy from the University of Portsmouth. 'That makes the signal difficult to model and interpret. It's an excellent case study for pushing forward the development of our theoretical tools.' 'It will take years for the community to fully unravel this intricate signal pattern and all its implications,' said Dr Gregorio Carullo, assistant professor at the University of Birmingham. 'Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features. Exciting times ahead!" Facilities like Ligo in the United States, Virgo in Italy, and KAGRA in Japan are engineered to detect the tiniest distortions in spacetime caused by violent cosmic events such as black hole mergers. The fourth observing run began in May 2023, and data through January 2024 are scheduled for release later this summer. 'This event pushes our instrumentation and data-analysis capabilities to the edge of what's currently possible,' says Dr Sophie Bini, a postdoctoral researcher at Caltech. 'It's a powerful example of how much we can learn from gravitational-wave astronomy — and how much more there is to uncover.' GW231123 is set to be presented at the 24th International Conference on General Relativity and Gravitation (GR24) and the 16th Edoardo Amaldi Conference on Gravitational Waves, held jointly as the GR-Amaldi meeting in Glasgow, from 14 to 18 July.

Largest-ever merger of black holes forms one 225 times the mass of the sun, astronomers say
Largest-ever merger of black holes forms one 225 times the mass of the sun, astronomers say

CBS News

time15-07-2025

  • Science
  • CBS News

Largest-ever merger of black holes forms one 225 times the mass of the sun, astronomers say

Scientists say they detected the largest-ever merger of two black holes, forming one that is 225 times the mass of the sun, adding that the new discovery "pushes the limits of" how astronomers understand how black holes are created. Two black holes combined to make the massive one, according to the LIGO-Virgo-KAGRA Collaboration, an international group that uses gravitational waves to detect black hole mergers and who identified the event. Gravitational waves occur when there are minute distortions in spacetime, caused by events like black hole mergers, the group said in a news release. One of the black holes was about 103 times the mass of the sun. The other was about 137 times it. These large black holes may have been formed by even earlier mergers, Professor Mark Hannam, from Cardiff University and a member of the LIGO Scientific Collaboration, said in a news release. Even within the merger, the black holes are rapidly spinning, scientists said. Their rotation speed is about 400,000 Earth's rotation speed, the collaboration said in a graphic. They are moving at about 80% to 90% of the maximum possible speed. "The black holes appear to be spinning very rapidly — near the limit allowed by Einstein's theory of general relativity," said Dr. Charlie Hoy, a gravitational-wave astrophysicist, LIGO member and postdoctoral research fellow at the University of Portsmouth, in the news release. "That makes the signal difficult to model and interpret." The massive black hole has been dubbed GW231123. Its unusual size and behavior is challenging scientists' understanding of black hole formation, Hannam said. Previously, the largest known black hole that came from a merger was about 140 times the mass of the sun. GW231123's discovery is also opening doors for new avenues of research, astronomers said. The behavior and size of the black hole "pushes the limits of" current theoretical models and existing gravitational-wave detection technology, the LIGO-Virgo-KAGRA Collaboration said. "It will take years for the community to fully unravel this intricate signal pattern and all its implications," Dr. Gregorio Carullo, a LIGO member and an assistant professor at the University of Birmingham's Institute for Gravitational Wave Astronomy, said in a statement. "Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features. Exciting times ahead!" The black hole was discovered in November 2023, during an observation period by the LIGO-Virgo-KAGRA Collaboration. The observation period began in May 2023, and the first part of the period ended in January 2024. More information about GW231123 and other black holes discovered by the collaboration will be presented this month at the 24th International Conference on General Relativity and Gravitation (GR24) and the 16th Edoardo Amaldi Conference on Gravitational Waves, two conferences presented jointly in Glasgow, Scotland. Data from the observation window will be published later in the summer. The data used to detect and study the massive black hole will also be made available for other researchers to use, the collaboration said.

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun
Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

The Irish Sun

time15-07-2025

  • Science
  • The Irish Sun

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

SCIENTISTS have discovered the biggest black hole merger e ver recorded, as two massive spacetime ripples spiral into each other. The monstrous collision occurred on the outskirts of our Milky Way galaxy, and produced a black hole roughly 225 times more massive than the sun. Advertisement 3 Aerial shot of the advanced LIGO gravitational detector in Livingston, Louisiana - one of the four LVK Collaboration detectors Credit: Alamy Before now, the most massive black hole merger had a total mass of 140 suns. The new collision event, dubbed GW231123, was found by the LIGO-Virgo-KAGRA (LVK) Collaboration - a group of four detectors that identify cataclysmic cosmic events. Each black hole was roughly 100 to 140 times the mass of our Sun before they combined. "This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation," Mark Hannam, of Cardiff University and a member of the LVK Collaboration, said in a Advertisement READ MORE ON SPACE "Black holes this massive are forbidden through standard stellar evolution models. "One possibility is that the two black holes in this binary formed through earlier mergers of smaller black holes." Evidence of the GW231123 event was discovered in late 2023, when two slight distortions in spacetime were spotted by laser detectors in Louisiana and Washington. 3 The black holes are moving so fast they are too difficult to properly analyse Credit: Alamy Advertisement The signal that arrived at the detectors was coming from two high-mass black holes that were spinning rapidly - meaning they were hard to analyse. Most read in Science Charlie Hoy, of the University of Portsmouth and also a member of the LVK, explained: "The black holes appear to be spinning very rapidly - near the limit allowed by Einstein's theory of general relativity. "That makes the signal difficult to model and interpret. "It's an excellent case study for pushing forward the development of our theoretical tools." Advertisement Horrifying black hole simulation shows what 'spaghettification' looks like when objects fall into 'extreme slurp' Researchers say they need to observe more similar, high-spin mergers to better calculate just how massive this most recent black hole merger is. Gregorio Carullo, of the University of Birmingham and a member of the LVK, noted: "It will take years for the community to fully unravel this intricate signal pattern and all its implications. "Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features." The researchers are set to present their findings at the Advertisement Black holes are formed through the collapse of massive stars or through the merging of smaller black holes. Known black holes currently fall into just two categories: stellar-mass black holes, which range from a few to a few dozen times the Sun's mass; and supermassive black holes, which can be anywhere from about 100,000 to 50 billion times as massive as the Sun. Intermediate-mass black holes fall into the gap of these two mass ranges and are physically unable to form from direct star collapse and are incredibly rare. Astrophysicists reckon these rare types of black holes grow from merging with others that are similar in size - like our most recent collision event. Advertisement 3 Researchers say they need to observe more similar, high-spin mergers to better calculate just how massive this most recent black hole merger is Credit: Alamy What is a black hole? The key facts Here's what you need to know... A black hole is a region of space where absolutely nothing can escape That's because they have extremely strong gravitational effects, which means once something goes into a black hole, it can't come back out They get their name because even light can't escape once it's been sucked in – which is why a black hole is completely dark What is an event horizon? There has to be a point at which you're so close to a black hole you can't escape Otherwise, literally everything in the universe would have been sucked into one The point at which you can no longer escape from a black hole's gravitational pull is called the event horizon The event horizon varies between different black holes, depending on their mass and size What is a singularity? The gravitational singularity is the very centre of a black hole It's a one-dimensional point that contains an incredibly large mass in an infinitely small space At the singularity, space-time curves infinitely, and the gravitational pull is infinitely strong Conventional laws of physics stop applying at this point How are black holes created? Most black holes are made when a supergiant star dies This happens when stars run out of fuel – like hydrogen – to burn, causing the star to collapse When this happens, gravity pulls the centre of the star inwards quickly and collapses into a tiny ball It expands and contracts until one final collapse, causing part of the star to collapse inwards thanks to gravity, and the rest of the star to explode outwards The remaining central ball is extremely dense, and if it's especially dense, you get a black hole

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun
Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

Scottish Sun

time15-07-2025

  • Science
  • Scottish Sun

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

Each black hole was roughly 100 to 140 times the mass of our Sun before they combined HOLE-Y SMOKES Biggest black hole merger EVER detected has created terrifying 'monster' that's 225 times as massive as our Sun Click to share on X/Twitter (Opens in new window) Click to share on Facebook (Opens in new window) SCIENTISTS have discovered the biggest black hole merger ever recorded, as two massive spacetime ripples spiral into each other. The monstrous collision occurred on the outskirts of our Milky Way galaxy, and produced a black hole roughly 225 times more massive than the sun. Sign up for Scottish Sun newsletter Sign up 3 Aerial shot of the advanced LIGO gravitational detector in Livingston, Louisiana - one of the four LVK Collaboration detectors Credit: Alamy Before now, the most massive black hole merger had a total mass of 140 suns. The new collision event, dubbed GW231123, was found by the LIGO-Virgo-KAGRA (LVK) Collaboration - a group of four detectors that identify cataclysmic cosmic events. Each black hole was roughly 100 to 140 times the mass of our Sun before they combined. "This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation," Mark Hannam, of Cardiff University and a member of the LVK Collaboration, said in a statement. "Black holes this massive are forbidden through standard stellar evolution models. "One possibility is that the two black holes in this binary formed through earlier mergers of smaller black holes." Evidence of the GW231123 event was discovered in late 2023, when two slight distortions in spacetime were spotted by laser detectors in Louisiana and Washington. 3 The black holes are moving so fast they are too difficult to properly analyse Credit: Alamy The signal that arrived at the detectors was coming from two high-mass black holes that were spinning rapidly - meaning they were hard to analyse. Charlie Hoy, of the University of Portsmouth and also a member of the LVK, explained: "The black holes appear to be spinning very rapidly - near the limit allowed by Einstein's theory of general relativity. "That makes the signal difficult to model and interpret. "It's an excellent case study for pushing forward the development of our theoretical tools." Horrifying black hole simulation shows what 'spaghettification' looks like when objects fall into 'extreme slurp' Researchers say they need to observe more similar, high-spin mergers to better calculate just how massive this most recent black hole merger is. Gregorio Carullo, of the University of Birmingham and a member of the LVK, noted: "It will take years for the community to fully unravel this intricate signal pattern and all its implications. "Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features." The researchers are set to present their findings at the 24th International Conference on General Relativity and Gravitation (GR24) and the 16th Edoardo Amaldi Conference on Gravitational Waves in Glasgow, Scotland this week. Black holes are formed through the collapse of massive stars or through the merging of smaller black holes. Known black holes currently fall into just two categories: stellar-mass black holes, which range from a few to a few dozen times the Sun's mass; and supermassive black holes, which can be anywhere from about 100,000 to 50 billion times as massive as the Sun. Intermediate-mass black holes fall into the gap of these two mass ranges and are physically unable to form from direct star collapse and are incredibly rare. Astrophysicists reckon these rare types of black holes grow from merging with others that are similar in size - like our most recent collision event. 3 Researchers say they need to observe more similar, high-spin mergers to better calculate just how massive this most recent black hole merger is Credit: Alamy

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun
Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

The Sun

time15-07-2025

  • Science
  • The Sun

Biggest black hole merger EVER detected has created terrifying ‘monster' that's 225 times as massive as our Sun

SCIENTISTS have discovered the biggest black hole merger ever recorded, as two massive spacetime ripples spiral into each other. The monstrous collision occurred on the outskirts of our Milky Way galaxy, and produced a black hole roughly 225 times more massive than the sun. 3 Before now, the most massive black hole merger had a total mass of 140 suns. The new collision event, dubbed GW231123, was found by the LIGO-Virgo-KAGRA (LVK) Collaboration - a group of four detectors that identify cataclysmic cosmic events. Each black hole was roughly 100 to 140 times the mass of our Sun before they combined. "This is the most massive black hole binary we've observed through gravitational waves, and it presents a real challenge to our understanding of black hole formation," Mark Hannam, of Cardiff University and a member of the LVK Collaboration, said in a statement. "Black holes this massive are forbidden through standard stellar evolution models. "One possibility is that the two black holes in this binary formed through earlier mergers of smaller black holes." Evidence of the GW231123 event was discovered in late 2023, when two slight distortions in spacetime were spotted by laser detectors in Louisiana and Washington. 3 The signal that arrived at the detectors was coming from two high-mass black holes that were spinning rapidly - meaning they were hard to analyse. Charlie Hoy, of the University of Portsmouth and also a member of the LVK, explained: "The black holes appear to be spinning very rapidly - near the limit allowed by Einstein's theory of general relativity. "That makes the signal difficult to model and interpret. "It's an excellent case study for pushing forward the development of our theoretical tools." Horrifying black hole simulation shows what 'spaghettification' looks like when objects fall into 'extreme slurp' Researchers say they need to observe more similar, high-spin mergers to better calculate just how massive this most recent black hole merger is. Gregorio Carullo, of the University of Birmingham and a member of the LVK, noted: "It will take years for the community to fully unravel this intricate signal pattern and all its implications. "Despite the most likely explanation remaining a black hole merger, more complex scenarios could be the key to deciphering its unexpected features." The researchers are set to present their findings at the 24th International Conference on General Relativity and Gravitation (GR24) and the 16th Edoardo Amaldi Conference on Gravitational Waves in Glasgow, Scotland this week. Black holes are formed through the collapse of massive stars or through the merging of smaller black holes. Known black holes currently fall into just two categories: stellar-mass black holes, which range from a few to a few dozen times the Sun's mass; and supermassive black holes, which can be anywhere from about 100,000 to 50 billion times as massive as the Sun. Intermediate-mass black holes fall into the gap of these two mass ranges and are physically unable to form from direct star collapse and are incredibly rare. Astrophysicists reckon these rare types of black holes grow from merging with others that are similar in size - like our most recent collision event. 3 What is a black hole? The key facts Here's what you need to know... A black hole is a region of space where absolutely nothing can escape That's because they have extremely strong gravitational effects, which means once something goes into a black hole, it can't come back out They get their name because even light can't escape once it's been sucked in – which is why a black hole is completely dark What is an event horizon? There has to be a point at which you're so close to a black hole you can't escape Otherwise, literally everything in the universe would have been sucked into one The point at which you can no longer escape from a black hole's gravitational pull is called the event horizon The event horizon varies between different black holes, depending on their mass and size What is a singularity? The gravitational singularity is the very centre of a black hole It's a one-dimensional point that contains an incredibly large mass in an infinitely small space At the singularity, space-time curves infinitely, and the gravitational pull is infinitely strong Conventional laws of physics stop applying at this point How are black holes created? Most black holes are made when a supergiant star dies This happens when stars run out of fuel – like hydrogen – to burn, causing the star to collapse When this happens, gravity pulls the centre of the star inwards quickly and collapses into a tiny ball It expands and contracts until one final collapse, causing part of the star to collapse inwards thanks to gravity, and the rest of the star to explode outwards The remaining central ball is extremely dense, and if it's especially dense, you get a black hole

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store