Latest news with #HindustanAeronauticsLimited


India.com
a day ago
- India.com
Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever
Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever Hindustan Aeronautics Limited (HAL) is preparing for the inaugural live firing test of the Astra Mk1 Beyond Visual Range Air-to-Air Missile (BVRAAM) from the Tejas Mk1A platform, slated for early August 2025. By Girish Linganna Edited by Joy Pillai Advertisement Made in India, Feared Worldwide: The Tejas-Astra Combo That's Changing Air Combat Forever Bottom Line Up Front: India is about to achieve a major milestone in August 2025 with the first live-fire test of the indigenous Astra Mk1 missile from the advanced Tejas Mk1A fighter jet, marking a crucial step toward complete self-reliance in air combat capabilities and strengthening India's defense posture against any future conflicts as reported by The Historic Moment Approaching Advertisement === Hindustan Aeronautics Limited (HAL) is preparing for the inaugural live firing test of the Astra Mk1 Beyond Visual Range Air-to-Air Missile (BVRAAM) from the Tejas Mk1A platform, slated for early August 2025. HAL Chairman and Managing Director DK Sunil announced the forthcoming trial, marking a crucial advancement in India's pursuit to bolster its homegrown air combat technology. This represents more than just a weapons test—it's a declaration of India's technological independence in aerospace defense. The importance of this test cannot be overstated. The Astra Mk1 missile, developed by the Defence Research and Development Organisation (DRDO), has already been successfully tested on earlier Tejas Mk1 variants using the ELTA ELM-2032 Multi-Mode Fire Control Radar. The Tejas Mk1A, however, introduces substantial upgrades, including the ELM-2052 Active Electronically Scanned Array (AESA) radar and a new Digital Flight Control Computer (DFCC), both of which require fresh integration trials with existing weapons systems. Advertisement === Understanding the Astra Missile Family: From Mk1 to the Future Astra Mk1: The Foundation Stone Astra Mk-1 is 3.6 m (12 ft) long with a diameter of 178 mm (7.0 in) and weighs 154 kg (340 lb). It uses mid-course inertial guidance driven by fibre-optic gyroscope with terminal guidance through active radar homing. It is capable of receiving course corrections through a secure data link. Think of the Astra Mk1 as India's answer to modern air combat needs. The missile's active radar seeker, with a homing range of 25 km (16 mi), was designed by Russia's Concern Morinformsystem-Agat but manufactured within India. The seeker can lock-on to a target with a radar cross section of 5 square metres from a distance of 15 km and enables off-boresight launches up to an angle of 45°. The missile's capabilities are impressive: The maximum range of Astra is 110 km in head-on chase and 20 km in tail chase. The missile could be launched from different altitudes – it can cover 110 km when launched from an altitude of 15 km, 44 km when fired from an altitude of eight km and 21 km when the altitude is sea-level. Astra Mk2: The Game Changer The Astra Mk2 represents a significant leap forward. Unlike the single-pulse rocket motor of the Astra Mk-1, the Astra Mk-2 uses a dual-pulse rocket motor, which dramatically increases its range and kill probability. Here's how this technology works in simple terms: The single-pulse rocket motor in the Astra Mk-1 burns its entire solid propellant in one go during the launch phase, imparting high kinetic energy and velocity to the missile, to the tune of 4.5 Mach or above. After the propellant burns out, the missile coasts down without any power, relying simply on gravity and kinetic energy. The farther away the target, the more the A2A missile slows down due to air drag. This limits the end-game kinematics of the missile — essentially the maneuvering capability of the missile when it reaches close to its target. This is precisely what the dual-pulse rocket motor aims to address. In the endgame, the second pulse of the dual-pulse motor fires, giving additional velocity and kinetic energy to the missile, providing either additional range or better end-game kinematics for a higher probability of kill. With a projected range of 140–160 km, the Astra MkII incorporates cutting-edge technologies, including a dual-pulse rocket motor, upgraded guidance algorithms, and an indigenous radio frequency (RF) seeker. The missile is slated to achieve operational readiness by 2026. Astra Mk3: The Future Vision India and Russia are working together to build a future Mk-3 model powered by a solid fuel ducted ramjet (SFDR) engine. Range: Astra Mk-1: 110 km (68 mi) / Astra Mk-2: 160 km (99 mi) / Astra Mk-3: 350 km (220 mi). This would put the Astra Mk3 in the same league as the world's most advanced air-to-air missiles. Radar Technology: The Eyes of Modern Fighters ELM-2052 AESA Radar: Current Technology The Tejas Mk1A currently uses the Israeli ELM-2052 AESA radar, which represents cutting-edge technology. The FCR is based on fully solid-state active phased array technology. The radar has multi-target tracking capabilities, able to track up to 64 targets simultaneously. The EL/M-2052 radar incorporates operational feedback from Israeli Air Force combat pilots. Understanding AESA Technology To understand why AESA radars are revolutionary, imagine the difference between a flashlight and a disco ball with hundreds of individual lights. Traditional radars are like flashlights—they send out one beam that physically moves to scan the sky. AESA radars are like having hundreds of tiny radar transmitters working together, allowing them to: – Track multiple targets simultaneously – Switch between different modes instantly – Resist enemy jamming better – Detect targets at longer ranges – Operate with lower probability of being detected Uttam AESA Radar: India's Indigenous Pride Uttam (lit. 'Excellent') is a solid-state gallium arsenide (GaAs) based AESA radar under development by the Electronics and Radar Development Establishment (LRDE), a laboratory of the Indian Defence Research and Development Organisation (DRDO). It is a low probability of intercept radar. It is a liquid cooled AESA radar featuring quad band modules that can be stacked to form a larger unit. The Uttam Mk-1 has a total of 912 TRMs. The indigenous Uttam radar offers impressive capabilities: The radar is capable of tracking 100 targets simultaneously and engage 6 of them by SARH/ARH missiles in high priority tracking mode. For comparison, Elta EL/M-2052 is capable of tracking 64 targets in TWS mode. Dr. Samir V. Kamat, Chairman of Defence Research & Development and Chairman of the Defence Research and Development Organisation (DRDO), refuted reports claiming that all 73 Tejas Mk1A fighter jets would be equipped with Israeli ELM-2052 AESA radars. Clarifying the status of radar integration in India's Light Combat Aircraft (LCA) program, Dr. Kamat stated, 'No, I don't think it's true. Discussions are still underway, and the plan is to integrate the Uttam AESA radar starting from the 41st Tejas Mk1A jet.' How This Technology Helps in Operation Sindoor-Type Scenarios The recent Operation Sindoor in May 2025 demonstrates exactly why indigenous capabilities matter. That pattern of inaction began to change in 2016, when in response to an attack at Uri, Indian special forces raided terrorist camps just across the Line of Control. At the next crisis, India's response was notably more aggressive. In 2019, in response to an attack at Pulwama, India launched an air strike targeting a terrorist site at Balakot. As I wrote in these pages, the Balakot air strike sought to deter Pakistan by crossing multiple new thresholds — India used airpower against Pakistan for the first time since 1971, and reached into undisputed Pakistani territory beyond Kashmir — and by deliberately generating risk to intimidate Pakistan. On 7 May 2025, India announced that it had launched missile and air strikes, codenamed Operation Sindoor, targeting nine sites across Pakistani-administered Azad Kashmir and Pakistan's Punjab province. According to sources cited by India Today, Rafale jets were employed, equipped with SCALP missiles and AASM Hammer bombs. The integration of Tejas Mk1A with Astra missiles provides several advantages in such scenarios: Stand-Off Capability: With a range surpassing 100 kilometers and sophisticated guidance systems, the Astra Mk1 is engineered to accurately neutralize aerial threats, even in environments with electronic interference. Its successful integration with the Tejas Mk1A will significantly augment the aircraft's air superiority, particularly in deployments at frontline airbases. Indigenous Advantage: Unlike imported weapons systems that may face restrictions during conflicts, indigenous systems can be deployed without external limitations. India carried out accurate strikes on fortified positions across the border using only domestically developed or assembled systems such as BrahMos missiles, Akashteer air defense units, and loitering munitions, without relying on U.S. platforms or foreign logistics. Quick Response: Forward airbases equipped with Tejas Mk1A fighters can respond rapidly to emerging threats without waiting for clearances or spare parts from foreign suppliers. Production Challenges and the Need for Speed The article rightly points out that Despite facing prior delays related to engine deliveries and radar integration, HAL is on course to deliver 12 Tejas Mk1A aircraft in 2025, with the inaugural aircraft expected to leave HAL's Nashik production line by the end of July. However, the production rate needs acceleration. The suggestion to involve private sector companies more extensively makes strategic sense. Currently, private companies manufacture components that HAL then assembles. A more distributed manufacturing approach where multiple companies can produce complete aircraft would: – Increase production rate significantly – Create redundancy in manufacturing capability – Reduce dependency on single production lines – Enable faster technology transfer and innovation The Strategic Importance of Self-Reliance The Astra program supports the IAF's goal of reducing reliance on foreign-sourced weaponry while enhancing autonomous strike capabilities. This is not just about saving foreign exchange—it's about strategic autonomy. When conflicts arise, countries with indigenous capabilities can: – Continue operations without external supply chain dependencies – Modify systems quickly based on battlefield requirements – Scale up production rapidly during extended conflicts – Avoid potential technology sanctions or restrictions Future Integration: Uttam Radar and Astra Mk2 The recommendation to start testing Astra Mk2 with Uttam radar on Tejas Mk1A before the 41st aircraft is strategically sound. The dual-pulse motor allows the missile to conserve energy during its mid-course flight and unleash a second burst of propulsion during the final approach, significantly increasing its no-escape zone (NEZ)—the range within which a target cannot evade the missile. This combination would provide: – Extended engagement range (140-160 km for Mk2 vs 110 km for Mk1) – Better tracking capability (100 targets for Uttam vs 64 for ELM-2052) – Complete indigenous system integration – Cost advantages (Rs 7-8 crore per Astra unit vs Rs 25 crore for imported alternatives) HAL's Critical Role in National Defense HAL's success in this program demonstrates India's growing aerospace capabilities. HAL has confirmed orders for 83 Mk1As and anticipates orders for an additional 97 examples. This represents not just aircraft production but the development of an entire aerospace ecosystem. The successful integration of Astra missiles with Tejas fighters proves that Indian organizations can develop world-class military technology. The successful test represents another step in the weapon's integration with the Tejas fighter platform. ASTRA is set to become a key part of the standard armament for both Tejas and the Su-30MKI fighter aircraft. Looking Ahead: Building Squadron Strength The criticism about deployment timeline is valid. India needs its first Tejas Mk1A squadron operational at the earliest. This requires: **Parallel Development:** Testing Astra Mk2 and Uttam radar integration should proceed simultaneously with Mk1 deliveries, not sequentially. **Rapid Scaling:** The suggestion for licensed production by multiple companies could dramatically increase production rates. **Forward Deployment:** One of the IAF's key expectations is that the Tejas Mk1A, once certified, will be deployable at forward airbases along India's borders, particularly in the western and northern sectors facing Pakistan and China. These bases, often located in challenging terrains and closer to potential flashpoints, require aircraft with robust performance, quick response times, and advanced weaponry. Conclusion: A New Chapter in Indian Aerospace The upcoming Astra Mk1 test from Tejas Mk1A in August 2025 represents more than a technological milestone—it symbolizes India's journey toward complete self-reliance in critical defense technologies. These developments affirm India's commitment to strengthening its domestic defense industry and enhancing its air combat readiness. As recent conflicts have shown, indigenous capabilities provide strategic advantages that cannot be matched by imported systems. The combination of Tejas fighters, Astra missiles, and Uttam radars creates a formidable indigenous air defense capability that can respond to threats without external dependencies. The path forward requires accelerated production, expanded private sector involvement, and continued investment in research and development. With HAL leading this charge and DRDO providing cutting-edge technology, India is well-positioned to achieve complete aerospace self-reliance within this decade. The sky is no longer the limit—it's India's domain to protect with indigenous excellence.


Time of India
3 days ago
- Business
- Time of India
HAL plans to ramp up revenues from accessories export: Official
The Hindustan Aeronautics Limited (HAL) plans to boost its revenues through focussed efforts on the export of accessories related to aircraft and other platforms, a senior official has said. In an interaction with mediapersons at the HAL's accessories division here on Wednesday, the official also said the platforms and components made by the state-run firm now reach "nearly 30 countries". Explore courses from Top Institutes in Select a Course Category Degree Data Science Artificial Intelligence Healthcare Management Design Thinking CXO Finance others Product Management Digital Marketing MBA Project Management Others Cybersecurity Leadership Data Science Data Analytics Technology PGDM Public Policy healthcare Operations Management MCA Skills you'll gain: Data-Driven Decision-Making Strategic Leadership and Transformation Global Business Acumen Comprehensive Business Expertise Duration: 2 Years University of Western Australia UWA Global MBA Starts on Jun 28, 2024 Get Details He emphasised that the HAL is already working with the government to deepen domestic capability across aircraft systems, while endeavouring to widen its export footprint. The defence public sector undertaking (PSU) has plans to ramp up revenues through the export of accessories related to aircraft and other platforms, including Dornier Do-228, he said. "This is part of focussed efforts at the corporate level," the official working with the HAL's accessories division said. Live Events The division supports this strategy through documentation, post-sale engineering support and modification services, officials said. They said the micro, small and medium enterprises (MSMEs) working with the HAL are also supported through formal "handholding" initiatives to build domestic capacity. In the post-COVID-19 era, the HAL has intensified efforts towards greater indigenisation across critical lines of equipment, the officials said. The Lucknow unit of the HAL has developed the "main fuel pump" used in fighter aircraft -- a critical system that powers some of the Indian Air Force's frontline platforms -- they said. The component is entirely indigenised and manufactured at the Lucknow division, the officials added and described it as a "significant achievement in the HAL's self-reliance drive". Fighter jet fuel pumps are critical in ensuring the proper flow of fuel to the engine under diverse flight conditions, including changes in altitude, rapid manoeuvring, acceleration and deceleration. They must provide a consistent and reliable fuel supply to maintain the aircraft's performance and safety, the officials said. "The main fuel pump is one of the most sensitive and high-performance systems in a fighter aircraft," an official said. Spread across 290 acres, the HAL complex in Lucknow houses the manufacturing unit and residential quarters, and supports aircraft such as the Su-30MKI, LCA Tejas, ALH Dhruv, Light Utility Helicopter (LUH) and Dornier Do-228, the officials said. The Lucknow division is part of the HAL's Accessories Complex, which also includes units in Kanpur, Hyderabad, Korwa and a newly-opened unit in Kasaragod. The Lucknow division supplies aircraft systems, including propulsion, hydraulics, mission and combat solutions, flight-control units and landing-gear systems. It also provides full-life-cycle support through post-sale documentation, modifications and engineering handholding, the officials said. The Lucknow division also provides system-level support for the Su-30MKI fleet, with complete maintenance, repair and overhaul (MRO) now being carried out within the country, they added. In addition to its defence contributions, the unit supports the country's space programme by contributing components for the Indian Space Research Organisation's (ISRO) Polar Satellite Launch Vehicle (PSLV) through the HAL's aerospace division, the officials said, noting that this reflects a "growing synergy" between the defence PSU's defence and civilian arms. The HAL has also allied operations with the Oil and Natural Gas Corporation (ONGC) and the Gas Authority of India Limited (GAIL), the officials said.
&w=3840&q=100)

Business Standard
3 days ago
- Business
- Business Standard
HAL eyes export boost with accessories, indigenised parts: Official
The Hindustan Aeronautics Limited (HAL) plans to boost its revenues through focussed efforts on the export of accessories related to aircraft and other platforms, a senior official has said. In an interaction with mediapersons at the HAL's accessories division here on Wednesday, the official also said the platforms and components made by the state-run firm now reach "nearly 30 countries". He emphasised that the HAL is already working with the government to deepen domestic capability across aircraft systems, while endeavouring to widen its export footprint. The defence public sector undertaking (PSU) has plans to ramp up revenues through the export of accessories related to aircraft and other platforms, including Dornier Do-228, he said. "This is part of focussed efforts at the corporate level," the official working with the HAL's accessories division said. The division supports this strategy through documentation, post-sale engineering support and modification services, officials said. They said the micro, small and medium enterprises (MSMEs) working with the HAL are also supported through formal "handholding" initiatives to build domestic capacity. In the post-COVID-19 era, the HAL has intensified efforts towards greater indigenisation across critical lines of equipment, the officials said. The Lucknow unit of the HAL has developed the "main fuel pump" used in fighter aircraft -- a critical system that powers some of the Indian Air Force's frontline platforms -- they said. The component is entirely indigenised and manufactured at the Lucknow division, the officials added and described it as a "significant achievement in the HAL's self-reliance drive". Fighter jet fuel pumps are critical in ensuring the proper flow of fuel to the engine under diverse flight conditions, including changes in altitude, rapid manoeuvring, acceleration and deceleration. They must provide a consistent and reliable fuel supply to maintain the aircraft's performance and safety, the officials said. "The main fuel pump is one of the most sensitive and high-performance systems in a fighter aircraft," an official said. Spread across 290 acres, the HAL complex in Lucknow houses the manufacturing unit and residential quarters, and supports aircraft such as the Su-30MKI, LCA Tejas, ALH Dhruv, Light Utility Helicopter (LUH) and Dornier Do-228, the officials said. The Lucknow division is part of the HAL's Accessories Complex, which also includes units in Kanpur, Hyderabad, Korwa and a newly-opened unit in Kasaragod. The Lucknow division supplies aircraft systems, including propulsion, hydraulics, mission and combat solutions, flight-control units and landing-gear systems. It also provides full-life-cycle support through post-sale documentation, modifications and engineering handholding, the officials said. The Lucknow division also provides system-level support for the Su-30MKI fleet, with complete maintenance, repair and overhaul (MRO) now being carried out within the country, they added. In addition to its defence contributions, the unit supports the country's space programme by contributing components for the Indian Space Research Organisation's (ISRO) Polar Satellite Launch Vehicle (PSLV) through the HAL's aerospace division, the officials said, noting that this reflects a "growing synergy" between the defence PSU's defence and civilian arms. The HAL has also allied operations with the Oil and Natural Gas Corporation (ONGC) and the Gas Authority of India Limited (GAIL), the officials said. (Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)


The Hindu
3 days ago
- Business
- The Hindu
Ajay Kumar Shrivastava takes over as HAL director for engineering, R&D
Ajay Kumar Shrivastava assumed charge as Director (Engineering and R&D) of Hindustan Aeronautics Limited (HAL) on July 15, the company said. Before this appointment, he held the position of Executive Director (Aircraft Research & Design Centre) at HAL, said an official release on Wednesday (July 16, 2025). Mr. Shrivastava began his career at HAL in 1988 as a Management Trainee (Technical). Throughout his 37-year tenure, he has held several key leadership positions, including Head of the ARDC and Head of the Transport Aircraft Research and Design Centre (TARDC), it added. He has made significant contributions to major projects such as the avionics upgrade of the entire HS-748 fleet, the Do-228, the Sea King helicopter, and the IL-78, the release said. Under his leadership, HAL secured DGCA certification for two Do-228 aircraft—the first indigenous transport civil passenger aircraft in India to receive Type Certification—as well as the Type Certification of the Hindustan-228 aircraft. He has also successfully led the indigenisation of several critical aircraft components and has extensive experience in the design and development of trainer, fighter, and transport aircraft, as well as rotary-wing platforms. A recipient of the FASIA (French Aeronautics & Space Industry Award) for his contributions to the aeronautics industry, Mr. Shrivastava played a key role in the avionics upgrade of the Hindustan Jet Trainer-36 'Yashas', which was successfully demonstrated at Aero India 2025, it further stated.


Business Upturn
5 days ago
- Business
- Business Upturn
HAL shares in focus as India receives second GE-404 engine for LCA Mark 1A fighter jet programme
Hindustan Aeronautics Limited (HAL) shares were in focus after India received the second GE-404 engine from the United States for its Light Combat Aircraft (LCA) Mark 1A program. HAL is scheduled to receive a total of 12 such engines by the end of this financial year, which will be installed in the LCA Mark 1A jets. The Indian Air Force has already placed orders for 83 of these fighter jets. Additionally, a proposal to procure 97 more LCA Mark 1A aircraft is at an advanced stage following clearance from the Ministry of Defence. Investors and analysts are closely tracking these developments for their potential impact on HAL's future order book and production cycle. India on Monday received the second GE-404 engine from the US for the LCA Mark 1A fighter jet aircraft programme. Indian public sector firm Hindustan Aeronautics Limited (HAL) is expected to receive 12 GE-404 engines by the end of this financial year. The engines will be fitted… — ANI (@ANI) July 15, 2025 Hindustan Aeronautics Limited (HAL) shares traded in a narrow range today. The stock opened at ₹4,899 and touched a high of ₹4,932, while the day's low was ₹4,890.70. HAL is currently trading well below its 52-week high of ₹5,535 but remains far above its 52-week low of ₹3,046.05 Ahmedabad Plane Crash Aman Shukla is a post-graduate in mass communication . A media enthusiast who has a strong hold on communication ,content writing and copy writing. Aman is currently working as journalist at