logo
#

Latest news with #M83

Webb telescope may have just revealed a spiral galaxy's startling secret
Webb telescope may have just revealed a spiral galaxy's startling secret

Yahoo

time27-04-2025

  • Science
  • Yahoo

Webb telescope may have just revealed a spiral galaxy's startling secret

Scientists have found an unusual neon glow near the center of the Southern Pinwheel Galaxy for the first time. This gas needs an enormous amount of energy to shine — more than normal stars can supply. The discovery, based on data from NASA's James Webb Space Telescope, likely means the barred spiral galaxy, sometimes called Messier 83 or M83, has been harboring an active, supermassive black hole in secret. The new research, published in The Astrophysical Journal, upends prior thinking about the galaxy. Previously, it was assumed that if there were a hole in its heart, it would be dormant and certainly not shooting out high-energy radiation. "Before Webb, we simply did not have the tools to detect such faint and highly ionized gas signatures in M83's nucleus," said Svea Hernandez, an astronomer at the Space Telescope Science Institute in Baltimore, in a statement. "We are finally able to explore these hidden depths of the galaxy and uncover what was once invisible." SEE ALSO: These scientists think alien life best explains what Webb just found Dust and gas obscure the view to extremely distant and inherently dim light sources, but infrared waves can pierce through the clouds. Credit: NASA GSFC / CIL / Adriana Manrique Gutierrez illustration Black holes are some of the most inscrutable phenomena in outer space. About 50 years ago, they were little more than a theory — a kooky mathematical answer to a physics problem. Even astronomers at the top of their field weren't entirely convinced they existed. Today, not only are black holes accepted science, they're getting their pictures taken by a collection of enormous, synced-up radio dishes on Earth. Unlike a planet or star, black holes don't have surfaces. Instead, they have a boundary called an "event horizon," or a point of no return. If anything swoops too close, it will fall in, never to escape the hole's gravitational clutch. The most common kind, called a stellar black hole, is thought to be the result of an enormous star dying in a supernova explosion. The star's material then collapses onto itself, condensing into a relatively tiny area. But how supermassive black holes, millions to billions of times more massive than the sun, form is even more elusive than typical stellar black holes. Many astrophysicists and cosmologists believe these invisible giants lurk at the center of virtually all galaxies. Recent Hubble Space Telescope observations have bolstered the theory that supermassive black holes begin in the dusty cores of starburst galaxies, where new stars are rapidly assembled, but scientists are still teasing it out. The Southern Pinwheel Galaxy — about 15 million light-years away in the constellation Hydra — is one such starburst galaxy. It has baffled scientists for decades as they struggled fruitlessly to find signs of a black hole at its center. Webb, a collaboration with the European and Canadian space agencies, was mainly designed to study the early universe, star formation, and distant galaxies. But its extreme sensitivity to infrared light, invisible to peoples' eyes, gave it the power to find clues that other telescopes couldn't, said Linda Smith, a co-author on the paper. Infrared light can shine through dust, which often blocks other forms of light. This gives Webb an advantage in studying cloudy areas where stars are forming or giant black holes might be active. Though the detected signals strongly suggest the presence of a black hole, the team is considering other possible sources, such as powerful shock waves moving through space or inordinately massive stars. The researchers plan to follow up their observations with other telescopes to look at the galaxy in different ways. "Now we have fresh evidence that challenges past assumptions," Smith said.

Has the James Webb Space Telescope discovered a 'missing' supermassive black hole? (video)
Has the James Webb Space Telescope discovered a 'missing' supermassive black hole? (video)

Yahoo

time23-04-2025

  • Science
  • Yahoo

Has the James Webb Space Telescope discovered a 'missing' supermassive black hole? (video)

When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists have long believed that monster-sized supermassive black holes lurk at the heart of all large galaxies. That means that the failure to detect such a cosmic titan at the heart of the Southern Pinwheel Galaxy, officially known as Messier 83 (M83), has been a frustrating conundrum. Now, using the James Webb Space Telescope (JWST), astronomers may have cracked this puzzle, finding the first evidence of a supermassive black hole at the heart of M83, also known as NGC 5236, a spiral galaxy located around 15 million light-years away. "The JWST is revolutionizing our understanding of galaxies," team member Linda Smith of the Space Telescope Science Institute said in a statement. "For years, astronomers have searched for a black hole in M83 without success. Now, we finally have a compelling clue that suggests one may be present." Supermassive black holes have masses millions or even billions of times that of the sun. Situated at the hearts of distant galaxies, these black holes are pretty conspicuous when they are actively feeding and surrounded by gas and dust that they heat, causing them to glow brightly. These regions, known as "active galactic nuclei" or "AGNs," can often be seen even in galaxies that are otherwise too distant and too faint to be detected. This has led scientists to speculate that either the supermassive black hole at the heart of M83 is dormant (not actively feeding on matter), or that the AGN it powers is hidden by a thick shroud of dust. That second explanation is favored by new data from the JWST which takes full advantage of the $10 billion space telescope's unprecedented sensitivity and spatial resolution. Clumps of highly ionized gas were the "smoking gun" hinting at the presence of an obscured AGN at the heart of M83. "Our discovery of highly ionized neon emission in the nucleus of M83 was unexpected," team leader Svea Hernandez, a European Space Agency (ESA) scientist at the Space Telescope Science Institute, said. "These signatures require large amounts of energy to be produced, more than what normal stars can generate. "This strongly suggests the presence of an AGN that has been elusive until now." Even the explosive death of massive stars in supernovas couldn't provide enough energy to create the signature spotted by the JWST. That makes an AGN the most likely suspect. But, not the only suspect. The team behind this discovery now needs to eliminate other possible candidates for the creation of highly ionized neon gas, such as shockwaves travelling through the gases that exists between stars, the "interstellar medium." Related Stories: — Is our universe trapped inside a black hole? This James Webb Space Telescope discovery might blow your mind —NASA spacecraft spots monster black hole bursting with X-rays 'releasing a hundred times more energy than we have seen elsewhere' — What would happen if the Milky Way's black hole erupted? This distant galaxy paints a terrifying picture Astronomers will now follow up the investigation of M83 with the Hubble Space Telescope, the Atacama Large Millimeter/submillimeter Array (ALMA), and the Very Large Telescope (VLT). In the meantime, this research proves how effective the JWST is at discovering hitherto unseen structures in the cosmos. "This discovery showcases how the JWST is making unexpected breakthroughs," Smith concluded, "Astronomers thought they had ruled out an AGN in M83, but now we have fresh evidence that challenges past assumptions and opens new avenues for exploration." The team's research was published on Thursday (April 17) in The Astrophysical Journal.

Scientists Just Found 300 of Some of the Rarest Black Holes in the Universe
Scientists Just Found 300 of Some of the Rarest Black Holes in the Universe

Yahoo

time27-02-2025

  • Science
  • Yahoo

Scientists Just Found 300 of Some of the Rarest Black Holes in the Universe

Intermediate-mass black holes—somewhere between stellar-mass and supermassive—are the rarest type of black hole in the universe. 300 of these elusive black holes were recently observed by NSF NOIRLab's DESI (Dark Energy Spectroscopic Instrument). While some are the active galactic nuclei of dwarf galaxies, most are thought to have been the seeds of what are now supermassive black holes. Some black holes are supermassive beasts up to tens of billions of times the mass of our Sun. Then, there are stellar-mass black holes, which top out at a few solar masses. So... what fills the void in between? One of the rarest types of black holes in the universe are intermediate-mass black holes (IMBHs). Sometimes referred to as 'missing link' black holes, these cosmic gaping maws—which can be anywhere from about 100 to 100,000 solar masses in size—have proved difficult to find. Recently, however, NSF NOIRLab's Dark Energy Spectroscopic Instrument (DESI) has been able to detect 300 more of them. DESI also detected active black holes in many dwarf galaxies, which are exactly what they sound like—rather small black holes with only a handful of stars (if you could call thousands to several billion a handful) scattered around. Only between 100 and 150 IMBHs were known, until now. Using the new data, a research team led by Ragadeepika Pucha from the University of Utah wanted to find out what intermediate-mass black holes can tell us about black hole formation. Supermassive black holes (SMBHs), which lurk in the centers of enormous galaxies like our own, destroy and consume so much material and expel so much energy that they are fairly obvious. Both the Milky Way's supermassive black hole (Sagittarius A*) and the monster at the heart of the galaxy M83 were able to be imaged because of the extreme brightness of their accretion disks. Black holes of lower mass, however, don't devour nearly as much. As a result, they are harder to make out—though, it does help if a smaller black hole is actively feeding at the time of observation, as the energy given off as it rips stars apart makes it easier to spot. 'When a black hole at the center of a galaxy starts feeding, it unleashes a tremendous amount of energy into its surroundings, transforming into what we call an active galactic nucleus,' Pucha said in a press release. 'This dramatic activity serves as a beacon, allowing us to identify hidden black holes in these small galaxies.' While Pucha's team was expecting most of the newly discovered IMBHs to be the active galactic nuclei (AGNs) of dwarf galaxies, that turned out not to be the case. Only 70 intermediate-mass black holes were associated with dwarf galaxies, judging by where their energy emissions came from. This is a surprise, considering how closely IMBHs are associated with dwarf galaxies (Given their size, it makes sense that their AGNs would be black holes of intermediate mass). But surprises are like candy to scientists, as they offer opportunities to ask questions that the experts may never have even thought to pose. After finding out the remaining IMBHs were not in dwarf galaxies, the researchers want to continue investigating these mysterious objects. They think that at least some of these black holes could be supermassive black hole seeds that might help explain the origins of the SMBHs we see in the universe today. SMBHs form by accretion, meaning that they accumulate more and more mass over time—either through standard 'eating' or through mergers with other black holes—until they reach a size that can hold a galaxy together. But these gigantic black holes had to start somewhere, and one of the leading theories for what their seeds may have been is IMBHs. Because the IMBHs observed by DESI are so distant, the team was able to see them as they were billions and billions of years ago, since that is how long their light took to reach Earth. As a result, it is possible that some of these objects have evolved into SMBHs by now, and studying their origins could tell us a lot about their evolution. 'As we cannot directly observe their formation with our current telescopes, we focus on their imprints on the local universe,' Pucha and her team said in a study recently posted to the preprint server arXiv. 'Most of these early black holes grow via accretion and mergers into the SMBHs we see today.' DESI, which will be scanning the sky for five more years, is expected to observe around 40 million galaxies and quasars during its lifespan. If it's already found 300 examples of one of the universe's greatest mysteries, who knows what else it will find. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store