Latest news with #spaceweather
Yahoo
13 hours ago
- Science
- Yahoo
How NASA plans to learn more about space weather
What is space weather and how does it affect us on Earth? A new NASA mission plans to study our sun's activity and solar winds that cause phenomena like the Aurora Borealis.
Yahoo
4 days ago
- Science
- Yahoo
2 new NASA satellites will track space weather to help keep us safe from solar storms
When you buy through links on our articles, Future and its syndication partners may earn a commission. A new mission set to blast off for low-Earth orbit will study magnetic storms around the Earth and learn more about how they affect our atmosphere and satellites. NASA's Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites, or TRACERS for short, mission represents a pair of satellites that will fly in a sun-synchronous orbit — meaning they are always over the dayside of the Earth — and pass through the polar cusps. The cusps are, in essence, two holes in Earth's magnetosphere, where the field lines dip down onto the magnetic poles. When an influx of solar wind particles slam into Earth's magnetosphere, they can overload the magnetic-field lines, causing them to snap, disconnect and then reconnect. Magnetic reconnection, as the process is called, can release energy that accelerates charged particles down the funnel-shaped cusps and into our atmosphere, where they collide with molecules and, if a solar storm is intense enough, generate auroral lights. When TRACERS launches — expected to be no earlier than late July — it will seek to learn more about the magnetic-reconnection process and how space weather affects our planet. "What we'll learn from TRACERS is critical for understanding, and eventually predicting, how energy from our sun impacts not only the Earth, but also our space- and ground-based assets, whether it be GPS or communications signals, power grids, space assets or our astronauts working in space," said Joe Westlake, Director of NASA's Heliophysics Division, in a NASA teleconference. Historically, the problem in studying magnetic reconnection has been that when a satellite flies through the region of reconnection and captures data, all it sees is a snapshot. Then, 90 minutes or so later on its next orbit, it takes another snapshot. In that elapsed time, the region may have changed, but it's impossible to tell from those snapshots why it's different. It could be because the system itself is changing, or the magnetic-reconnection coupling process between the solar wind and Earth's magnetosphere is moving about — or maybe it is switching on and off. "These are fundamental things that we need to understand," said TRACERS' principal investigator, David Miles of the University of Iowa, in the same teleconference. That's why TRACERS is important, because it is two satellites working in tandem rather than being a lone magnetic explorer. "They're going to follow each other at a very close separation," said Miles. "So, one spacecraft goes through, and within two minutes the second spacecraft comes through, and that gives us two closely spaced measurements." RELATED STORIES — Colossal eruption carves 250,000-mile-long 'canyon of fire' into the sun (video) — May 2024 solar storm cost $500 million in damages to farmers, new study reveals — 'We don't know how bad it could get': Are we ready for the worst space weather? Together, the twin spacecraft will measure the magnetic- and electric-field strengths where magnetic reconnection is taking place, as well as what the local ions and electrons trapped in the magnetosphere are doing. "What TRACERS is going to study is how the output of the sun couples to near-Earth space," said Miles. "What we're looking to understand is how the coupling between those systems changes in space and in time." TRACERS will not be alone out there, and will be able to work with other missions already in operation, such as NASA's Magnetospheric Multiscale Mission (MMM), that studies reconnection from farther afield than TRACERS' low-Earth orbit 590 kilometers above our heads. There's also NASA's Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission, and the Electrojet Zeeman Imaging Explorer (EZIE), which both study solar-wind interactions with our planet from low-Earth orbit. "TRACERS joins the fleet of current heliophysics missions that are actively increasing our understanding of the sun, space weather, and how to mitigate its impacts," said Westlake. The $170 million TRACERS is set to launch no earlier than the end of July on a SpaceX Falcon 9 rocket that will be carrying several other small missions into orbit at the same time. The answers that TRACERS could provide about how magnetic reconnection works will allow scientists to better protect critical infrastructure for when solar storms hit. "It's going to help us keep our way of life safe here on Earth," said Westlake. Solve the daily Crossword
Yahoo
16-07-2025
- Science
- Yahoo
Skimming the Sun, probe sheds light on space weather threats
Eruptions of plasma piling atop one another, solar wind streaming out in exquisite detail -- the closest-ever images of our Sun are a gold mine for scientists. Captured by the Parker Solar Probe during its closest approach to our star starting on December 24, 2024, the images were recently released by NASA and are expected to deepen our understanding of space weather and help guard against solar threats to Earth. - A historic achievement – "We have been waiting for this moment since the late Fifties," Nour Rawafi, project scientist for the mission at the Johns Hopkins Applied Physics Laboratory, told AFP. Previous spacecraft have studied the Sun, but from much farther away. Parker was launched in 2018 and is named after the late physicist Eugene Parker, who in 1958 theorized the existence of the solar wind -- a constant stream of electrically charged particles that fan out through the solar system. The probe recently entered its final orbit where its closest approach takes it to just 3.8 million miles from the Sun's surface -- a milestone first achieved on Christmas Eve 2024 and repeated twice since on an 88-day cycle. To put the proximity in perspective: if the distance between Earth and the Sun measured one foot, Parker would be hovering just half an inch away. Its heat shield was engineered to withstand up to 2,500 degrees Fahrenheit (1,370 degrees Celsius) -- but to the team's delight, it has only experienced around 2,000F (1090C) so far, revealing the limits of theoretical modeling. Remarkably, the probe's instruments, just a yard (meter) behind the shield, remain at little more than room temperature. - Staring at the Sun – The spacecraft carries a single imager, the Wide-Field Imager for Solar Probe (WISPR), which captured data as Parker plunged through the Sun's corona, or outer atmosphere. Stitched into a seconds-long video, the new images reveal coronal mass ejections (CMEs) -- massive bursts of charged particles that drive space weather -- in high resolution for the first time. "We had multiple CMEs piling up on top of each other, which is what makes them so special," Rawafi said. "It's really amazing to see that dynamic happening there." Such eruptions triggered the widespread auroras seen across much of the world last May, as the Sun reached the peak of its 11-year cycle. Another striking feature is how the solar wind, flowing from the left of the image, traces a structure called the heliospheric current sheet: an invisible boundary where the Sun's magnetic field flips from north to south. It extends through the solar system in the shape of a twirling skirt and is critical to study, as it governs how solar eruptions propagate and how strongly they can affect Earth. - Why it matters – Space weather can have serious consequences, such as overwhelming power grids, disrupting communications, and threatening satellites. As thousands more satellites enter orbit in the coming years, tracking them and avoiding collisions will become increasingly difficult -- especially during solar disturbances, which can cause spacecraft to drift slightly from their intended orbits. Rawafi is particularly excited about what lies ahead, as the Sun heads toward the minimum of its cycle, expected in five to six years. Historically, some of the most extreme space weather events have occurred during this declining phase -- including the infamous Halloween Solar Storms of 2003, which forced astronauts aboard the International Space Station to shelter in a more shielded area. "Capturing some of these big, huge be a dream," he said. Parker still has far more fuel than engineers initially expected and could continue operating for decades -- until its solar panels degrade to the point where they can no longer generate enough power to keep the spacecraft properly oriented. When its mission does finally end, the probe will slowly disintegrate -- becoming, in Rawafi's words, "part of the solar wind itself." ia/jgc


France 24
16-07-2025
- Science
- France 24
Skimming the Sun, probe sheds light on space weather threats
Captured by the Parker Solar Probe during its closest approach to our star starting on December 24, 2024, the images were recently released by NASA and are expected to deepen our understanding of space weather and help guard against solar threats to Earth. - A historic achievement – "We have been waiting for this moment since the late Fifties," Nour Rawafi, project scientist for the mission at the Johns Hopkins Applied Physics Laboratory, told AFP. Previous spacecraft have studied the Sun, but from much farther away. Parker was launched in 2018 and is named after the late physicist Eugene Parker, who in 1958 theorized the existence of the solar wind -- a constant stream of electrically charged particles that fan out through the solar system. The probe recently entered its final orbit where its closest approach takes it to just 3.8 million miles from the Sun's surface -- a milestone first achieved on Christmas Eve 2024 and repeated twice since on an 88-day cycle. To put the proximity in perspective: if the distance between Earth and the Sun measured one foot, Parker would be hovering just half an inch away. Its heat shield was engineered to withstand up to 2,500 degrees Fahrenheit (1,370 degrees Celsius) -- but to the team's delight, it has only experienced around 2,000F (1090C) so far, revealing the limits of theoretical modeling. Remarkably, the probe's instruments, just a yard (meter) behind the shield, remain at little more than room temperature. - Staring at the Sun – The spacecraft carries a single imager, the Wide-Field Imager for Solar Probe (WISPR), which captured data as Parker plunged through the Sun's corona, or outer atmosphere. Stitched into a seconds-long video, the new images reveal coronal mass ejections (CMEs) -- massive bursts of charged particles that drive space weather -- in high resolution for the first time. "We had multiple CMEs piling up on top of each other, which is what makes them so special," Rawafi said. "It's really amazing to see that dynamic happening there." Such eruptions triggered the widespread auroras seen across much of the world last May, as the Sun reached the peak of its 11-year cycle. Another striking feature is how the solar wind, flowing from the left of the image, traces a structure called the heliospheric current sheet: an invisible boundary where the Sun's magnetic field flips from north to south. It extends through the solar system in the shape of a twirling skirt and is critical to study, as it governs how solar eruptions propagate and how strongly they can affect Earth. - Why it matters – Space weather can have serious consequences, such as overwhelming power grids, disrupting communications, and threatening satellites. As thousands more satellites enter orbit in the coming years, tracking them and avoiding collisions will become increasingly difficult -- especially during solar disturbances, which can cause spacecraft to drift slightly from their intended orbits. Rawafi is particularly excited about what lies ahead, as the Sun heads toward the minimum of its cycle, expected in five to six years. Historically, some of the most extreme space weather events have occurred during this declining phase -- including the infamous Halloween Solar Storms of 2003, which forced astronauts aboard the International Space Station to shelter in a more shielded area. "Capturing some of these big, huge be a dream," he said. Parker still has far more fuel than engineers initially expected and could continue operating for decades -- until its solar panels degrade to the point where they can no longer generate enough power to keep the spacecraft properly oriented. When its mission does finally end, the probe will slowly disintegrate -- becoming, in Rawafi's words, "part of the solar wind itself."


Malay Mail
16-07-2025
- Science
- Malay Mail
Skimming the Sun, probe sheds light on space weather threats
WASHINGTON, July 16 — Eruptions of plasma piling atop one another, solar wind streaming out in exquisite detail — the closest-ever images of our Sun are a gold mine for scientists. Captured by the Parker Solar Probe during its closest approach to our star starting on December 24, 2024, the images were recently released by Nasa and are expected to deepen our understanding of space weather and help guard against solar threats to Earth. A historic achievement 'We have been waiting for this moment since the late Fifties,' Nour Rawafi, project scientist for the mission at the Johns Hopkins Applied Physics Laboratory, told AFP. Previous spacecraft have studied the Sun, but from much farther away. Parker was launched in 2018 and is named after the late physicist Eugene Parker, who in 1958 theorised the existence of the solar wind — a constant stream of electrically charged particles that fan out through the solar system. The probe recently entered its final orbit where its closest approach takes it to just 3.8 million miles from the Sun's surface — a milestone first achieved on Christmas Eve 2024 and repeated twice since on an 88-day cycle. To put the proximity in perspective: if the distance between Earth and the Sun measured one foot, Parker would be hovering just half an inch away. Its heat shield was engineered to withstand up to 2,500 degrees Fahrenheit (1,370 degrees Celsius) — but to the team's delight, it has only experienced around 2,000F (1090C) so far, revealing the limits of theoretical modelling. Remarkably, the probe's instruments, just a yard (meter) behind the shield, remain at little more than room temperature. Staring at the Sun The spacecraft carries a single imager, the Wide-Field Imager for Solar Probe (WISPR), which captured data as Parker plunged through the Sun's corona, or outer atmosphere. Stitched into a seconds-long video, the new images reveal coronal mass ejections (CMEs) — massive bursts of charged particles that drive space weather — in high resolution for the first time. 'We had multiple CMEs piling up on top of each other, which is what makes them so special,' Rawafi said. 'It's really amazing to see that dynamic happening there.' Such eruptions triggered the widespread auroras seen across much of the world last May, as the Sun reached the peak of its 11-year cycle. Another striking feature is how the solar wind, flowing from the left of the image, traces a structure called the heliospheric current sheet: an invisible boundary where the Sun's magnetic field flips from north to south. It extends through the solar system in the shape of a twirling skirt and is critical to study, as it governs how solar eruptions propagate and how strongly they can affect Earth. Why it matters Space weather can have serious consequences, such as overwhelming power grids, disrupting communications, and threatening satellites. As thousands more satellites enter orbit in the coming years, tracking them and avoiding collisions will become increasingly difficult — especially during solar disturbances, which can cause spacecraft to drift slightly from their intended orbits. Rawafi is particularly excited about what lies ahead, as the Sun heads toward the minimum of its cycle, expected in five to six years. Historically, some of the most extreme space weather events have occurred during this declining phase — including the infamous Halloween Solar Storms of 2003, which forced astronauts aboard the International Space Station to shelter in a more shielded area. 'Capturing some of these big, huge be a dream,' he said. Parker still has far more fuel than engineers initially expected and could continue operating for decades — until its solar panels degrade to the point where they can no longer generate enough power to keep the spacecraft properly oriented. When its mission does finally end, the probe will slowly disintegrate — becoming, in Rawafi's words, 'part of the solar wind itself.' — AFP