China's Liu Jiakun wins Pritzker Prize, 'Nobel' for architecture
The Pritzker Prize, dubbed the "Nobel" for architecture, was awarded Tuesday to China's Liu Jiakun, who was recognized for designs that celebrate "everyday lives."
"In a global context where architecture is struggling to find adequate responses to fast evolving social and environmental challenges, Liu Jiakun has provided convincing answers that also celebrate the everyday lives of people as well as their communal and spiritual identities," the award's jury wrote in a statement.
Born in 1956, Liu has worked on more than 30 projects in China ranging from academic and cultural institutions to civic spaces and commercial buildings.
"Architecture should reveal something -- it should abstract, distill and make visible the inherent qualities of local people," Liu said in the statement, evoking his craft's capacity to create "a sense of shared community."
Liu lives and works in his birth city of Chengdu, where he prioritizes the use of local materials and traditional building techniques.
His projects include the Museum of Clocks in Chengdu, a large circular structure with a skylight that illuminates an interior strip of photographs.
Alejandro Aravena, who won the award in 2016 and is chair of the jury, said Liu's works offer "clues on how to confront the challenges of urbanization" especially because they are sometimes "a building, infrastructure, landscape and public space at the same time."
"Cities tend to segregate functions, but Liu Jiakun takes the opposite approach and sustains a delicate balance to integrate all dimensions of the urban life," Aravena said.
Liu, who is the 54th recipient of the Pritzker Prize, will be honored at a celebration in Abu Dhabi in spring, award organizers said.
Last year's prize went to Japan's Riken Yamamoto, whose projects are credited with promoting human contact and who said at the time his objective was to "design architecture that can bring joy to people around it."
sha-af/bfm/bjt/dw

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 days ago
- Yahoo
New research challenges everything we know about the Big Bang
The Big Bang is often described as the explosive birth of the universe – a singular moment when space, time and matter sprang into existence. But what if this was not the beginning at all? What if our universe emerged from something else – something more familiar and radical at the same time? In a new paper, published in Physical Review D, my colleagues and I propose a striking alternative. Our calculations suggest the Big Bang was not the start of everything, but rather the outcome of a gravitational crunch or collapse that formed a very massive black hole – followed by a bounce inside it. This idea, which we call the black hole universe, offers a radically different view of cosmic origins, yet it is grounded entirely in known physics and observations. Today's standard cosmological model, based on the Big Bang and cosmic inflation (the idea that the early universe rapidly blew up in size), has been remarkably successful in explaining the structure and evolution of the universe. But it comes at a price: it leaves some of the most fundamental questions unanswered. For one, the Big Bang model begins with a singularity – a point of infinite density where the laws of physics break down. This is not just a technical glitch; it's a deep theoretical problem that suggests we don't really understand the beginning at all. To explain the universe's large-scale structure, physicists introduced a brief phase of rapid expansion into the early universe called cosmic inflation, powered by an unknown field with strange properties. Later, to explain the accelerating expansion observed today, they added another 'mysterious' component: dark energy. In short, the standard model of cosmology works well – but only by introducing new ingredients we have never observed directly. Meanwhile, the most basic questions remain open: where did everything come from? Why did it begin this way? And why is the universe so flat, smooth, and large? Our new model tackles these questions from a different angle – by looking inward instead of outward. Instead of starting with an expanding universe and trying to trace back how it began, we consider what happens when an overly dense collection of matter collapses under gravity. This is a familiar process: stars collapse into black holes, which are among the most well-understood objects in physics. But what happens inside a black hole, beyond the event horizon from which nothing can escape, remains a mystery. In 1965, the British physicist Roger Penrose proved that under very general conditions, gravitational collapse must lead to a singularity. This result, extended by the late British physicist Stephen Hawking and others, underpins the idea that singularities – like the one at the Big Bang – are unavoidable. The idea helped win Penrose a share of the 2020 Nobel prize in physics and inspired Hawking's global bestseller A Brief History of Time: From the Big Bang to Black Holes. But there's a caveat. These 'singularity theorems' rely on 'classical physics' which describes ordinary macroscopic objects. If we include the effects of quantum mechanics, which rules the tiny microcosmos of atoms and particles, as we must at extreme densities, the story may change. In our new paper, we show that gravitational collapse does not have to end in a singularity. We find an exact analytical solution – a mathematical result with no approximations. Our maths show that as we approach the potential singularity, the size of the universe changes as a (hyperbolic) function of cosmic time. This simple mathematical solution describes how a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase. But how come Penrose's theorems forbid out such outcomes? It's all down to a rule called the quantum exclusion principle, which states that no two identical particles known as fermions can occupy the same quantum state (such as angular momentum, or 'spin'). And we show that this rule prevents the particles in the collapsing matter from being squeezed indefinitely. As a result, the collapse halts and reverses. The bounce is not only possible – it's inevitable under the right conditions. Crucially, this bounce occurs entirely within the framework of general relativity, which applies on large scales such as stars and galaxies, combined with the basic principles of quantum mechanics – no exotic fields, extra dimensions or speculative physics required. What emerges on the other side of the bounce is a universe remarkably like our own. Even more surprisingly, the rebound naturally produces the two separate phases of accelerated expansion – inflation and dark energy – driven not by a hypothetical fields but by the physics of the bounce itself. One of the strengths of this model is that it makes testable predictions. It predicts a small but non-zero amount of positive spatial curvature – meaning the universe is not exactly flat, but slightly curved, like the surface of the Earth. This is simply a relic of the initial small over-density that triggered the collapse. If future observations, such as the ongoing Euclid mission, confirm a small positive curvature, it would be a strong hint that our universe did indeed emerge from such a bounce. It also makes predictions about the current universe's rate of expansion, something that has already been verified. This model does more than fix technical problems with standard cosmology. It could also shed new light on other deep mysteries in our understanding of the early universe – such as the origin of supermassive black holes, the nature of dark matter, or the hierarchical formation and evolution of galaxies. These questions will be explored by future space missions such as Arrakhis, which will study diffuse features such as stellar halos (a spherical structure of stars and globular clusters surrounding galaxies) and satellite galaxies (smaller galaxies that orbit larger ones) that are difficult to detect with traditional telescopes from Earth and will help us understand dark matter and galaxy evolution. These phenomena might also be linked to relic compact objects – such as black holes – that formed during the collapsing phase and survived the bounce. The black hole universe also offers a new perspective on our place in the cosmos. In this framework, our entire observable universe lies inside the interior of a black hole formed in some larger 'parent' universe. We are not special, no more than Earth was in the geocentric worldview that led Galileo (the astronomer who suggested the Earth revolves around the Sun in the 16th and 17th centuries) to be placed under house arrest. We are not witnessing the birth of everything from nothing, but rather the continuation of a cosmic cycle – one shaped by gravity, quantum mechanics, and the deep interconnections between them. Enrique Gaztanaga is a Professor in the Institute of Cosmology and Gravitation (University of Portsmouth) at the University of Portsmouth. This article is republished from The Conversation under a Creative Commons license. Read the original article.
Yahoo
5 days ago
- Yahoo
Richard Garwin obituary
The Nobel laureate Enrico Fermi called his student Richard Garwin 'the only true genius I've ever met'. Garwin, who has died aged 97, is perhaps the most influential 20th-century scientist that you have never heard of, because he produced much of his work under the constraints of national or commercial secrecy. During 40 years working at IBM on an endless stream of research projects, he was granted 47 patents, in diverse areas including magnetic resonance imaging, high-speed laser printers and touch-screen monitors. Garwin, a polymath who was adviser to six US presidents, wrote papers on space weapons, pandemics, radioactive waste disposal, catastrophic risks and nuclear disarmament. Throughout much of that time, a greater secret remained: in 1951, aged 23, he had designed the world's first hydrogen bomb. Ten years earlier, Fermi had had the insight that an atomic bomb explosion would create extraordinarily high pressures and temperatures like those in the heart of the sun. This would be hot enough to ignite fusion of hydrogen atoms, the dynamical motor that releases solar energy, with the potential to make an explosion of unlimited power. This is known as a thermonuclear explosion, reflecting the high temperature, in contrast to an atomic bomb, which starts at room temperature. Detonation of the atomic bomb in 1945 gave the proof of the first part of this concept, but in secret lectures at the Los Alamos laboratory in New Mexico that summer, Fermi admitted that although an exploding atomic bomb could act as the spark that ignites hydrogen fuel, he could find no way of keeping the material alight. In 1949, the USSR exploded its first atomic bomb and within months President Harry S Truman announced that the US would develop 'the so-called hydrogen or superbomb'. In the same year, Garwin graduated from the University of Chicago with a doctorate in physics and became an instructor in the physics department. Fermi invited him to join Los Alamos as a summer consultant, to help to realise Truman's goal. Early in 1951 Edward Teller and Stanislaw Ulam made the theoretical breakthrough: a bomb consisting of two physically separated parts in a cylindrical casing. One component was an atom bomb whose explosion would emit both atomic debris and electromagnetic radiation. The radiation would move at the speed of light and flood the interior with rays that would compress the second component containing the hydrogen fuel. The impact of the debris an instant later would complete the ignition. This one-two attack on the hydrogen fuel was the theoretical idea that Teller asked Garwin to develop. Garwin turned their rough idea into a detailed design that remains top secret even today. The device, codenamed Ivy Mike, was assembled on the tiny island of Elugelab in the Enewatak Atoll of the Marshall Islands in the south Pacific. Weighing 80 tonnes and three storeys high, it looked more like an industrial site than a bomb. It was undeliverable by an aeroplane but designed solely to prove the concept. On 1 November 1952, the explosion, which was 700 times more powerful than the atomic bombs dropped over Hiroshima or Nagasakai, instantly wiped Elugelab from the face of the earth and vaporised 80m tonnes of coral. In their place was a crater a mile across into which the waters of the Pacific Ocean poured. The mushroom cloud reached 80,000ft in 2 minutes and continued to rise until it was four times higher than Mount Everest, stretching 60 miles across. The core was 30 times hotter than the heart of the sun, the fireball 3 miles wide. The sky shone like a red-hot furnace. For several minutes, many observers feared that the test was out of hand and that the whole atmosphere would ignite. None of the news reports mentioned Garwin's name; he was a scientific unknown, a junior faculty member at the University of Chicago. A month later he joined the International Business Machines Corporation, IBM, in Yorktown Heights, New York. The post included a faculty appointment at Columbia, which gave him considerable freedom to pursue his research interests and to continue as a government consultant at Los Alamos and, increasingly, in Washington. Born in Cleveland, Ohio, the elder son of Leona (nee Schwartz), a legal secretary, and Robert Garwin, a teacher of electronics at a technical high school by day and a projectionist at a cinema at night, Dick was a prodigy; by the age of five he was repairing family appliances. After attending public schools in Cleveland, in 1944 he entered Case Western Reserve University. In 1947, he graduated with a bachelor's degree in physics and married Lois Levy; the couple moved to Chicago, where Garwin was tutored by Fermi. He earned a master's degree in 1948 and a doctorate, aged 21, in 1949. In his doctoral exams he scored the highest marks ever recorded in the university. In addition to his applied science research for IBM, he worked for decades on ways of observing gravitational waves, ripples in space-time predicted by Albert Einstein. His detectors successfully observed the ripples in 2015. This has opened a new window on the universe, in revealing the dynamics of black holes. Throughout his career he continued to advise the US government on national defence issues. This included prioritising targets in the Soviet Union, warfare involving nuclear-armed submarines, and satellite reconnaissance and communication systems. A strong supporter of reducing nuclear arsenals, he advised the US president Jimmy Carter during negotiations with the Soviet president Leonid Brezhnev on the 1979 Strategic Arms Limitation Treaty. He believed that the US should nonetheless maintain a strategic balance of nuclear power with the Soviet Union and opposed policies that could upset that: 'Moscow is more interested in live Russians than dead Americans.' After retiring from the University of Chicago in 1993, he chaired the State Department's arms control and non-proliferation advisory board until 2001. In 2002 he was awarded the National Medal of Science, the US's highest scientific award, and in 2016 the Presidential Medal of Freedom, the nation's highest civilian award. In presenting the award, Barack Obama remarked that Garwin 'never met a problem he didn't want to solve'. Lois died in 2018. Garwin is survived by two sons and a daughter, five grandchildren and a great-grandchild. • Richard Lawrence Garwin, physicist, born 19 April 1928; died 13 May 2025

Yahoo
5 days ago
- Yahoo
St. Francis freshman Jaden Soong shoots 62 to win CIF state golf championship
Southern California is where golf prodigies Tiger Woods and Patrick Cantlay first began to receive attention as youths, and 14-year-old Jaden Soong, a member of the Class of 2028 at St. Francis High in La Canada, is on the same path. On Tuesday, he mastered Poppy Hills Country Club, shooting a nine-under-par 62 to win the CIF state championship in Pebble Beach. He had no bogies, seven birdies and an eagle. He's believed to be the youngest to win a CIF individual golf title. It's just another achievement for someone who came close to qualifying for the U.S. Open as a 13-year-old in 2023. Advertisement Soong only earned a chance to play on Tuesday by winning two playoffs to receive the invite as an at-large competitor. He said he hadn't played Poppy Hills since he was 7 or 8 but got a round in before Tuesday's competition. He had two birdies and an eagle on the front nine. Then came birdies on No. 10 and No. 11 to go to six under par. He and Evan Liu of Torrey Pines started to pull away from the rest of the field on the par-71 course. Liu was in the clubhouse at seven under after making a birdie on No. 18 to finish with a 64, with Soong at six under with six holes to play. Soong tied Liu at seven under with a birdie on No. 14, a 369-yard par-four hole. Then he went to eight under with a birdie on the par-three No. 17. He hit a perfect drive on No. 18, a 503-yard par-five hole and had a 13-foot putt for an eagle before settling for a tap in birdie. Advertisement Soong loves pressure and showed his comfort level throughout a round to remember. Stevenson High in Monterey won the team title. Sign up for the L.A. Times SoCal high school sports newsletter to get scores, stories and a behind-the-scenes look at what makes prep sports so popular. This story originally appeared in Los Angeles Times.