Scientists hunted for planets around our cosmic neighbor. They found 4.
Barnard's Star, just some 6 light-years away, has intrigued astronomers for over a century.
Does the second-closest stellar system to us host any planets?
Though this system has hoodwinked astronomers with planetary signals before, researchers say they're confident they have detected three new planets and confirmed another. After peering at Barnard's Star over 112 nights, scientists using a powerful telescope in Chile found compelling evidence of four particularly small exoplanets, each just some 20 to 30 percent the size of Earth. That makes them considerably smaller than Mars, which is about half Earth's size.
"It's a really exciting find — Barnard's Star is our cosmic neighbor, and yet we know so little about it," Ritvik Basant, an exoplanet researcher at the University of Chicago who led the research, said in a statement. "It's signaling a breakthrough with the precision of these new instruments from previous generations."
SEE ALSO: A dramatic total lunar eclipse is coming. You don't want to miss it.
The new research has been published in The Astrophysical Journal Letters.
Each of these worlds is probably rocky, as opposed to a gas giant planet like Jupiter, but they almost certainly aren't habitable. That's because they're searing hot, as they zip closely around Barnard's Star in just a matter of days. Even so, their discovery shows new ways that astronomers can find such small, nearly imperceptible worlds, known as "sub-Earths."
It was tremendously challenging to detect these planets. For one, they're located right next to their luminous star, making them daunting to see. And from our perch on Earth, we don't see these worlds transiting in front of their star, which is a common way planets beyond our solar system, or exoplanets, are found.
A conception of the surface of a hot world orbiting Barnard's Star. Credit: ESO / M. Kornmesser
To find these worlds, the astronomers used something called the radial velocity technique, wherein a specialized instrument on a telescope looks for a star exhibiting extremely slight wobbles. These wobbles are caused by the gravitational influence, however small, orbiting planets have on their star, which subtly alters the star's emitted light. (In this case, a high resolution instrument called MAROON-X was mounted on the over 26-foot-wide Gemini North telescope, located at 8,930 feet in the profoundly dark Chilean desert.)
"The powerful instrument measures these small shifts in light so precisely that it can even tease apart the number and masses of the planets that must be circling the star to have the observed effect," the National Science Foundation's NOIRLab — which runs big telescopes across the U.S. and globally — said in a statement.
Astronomers are keenly interested in understanding planets around stars like Barnard's, which is a red dwarf. These are small stars, but the most common in the universe. Importantly, red dwarfs are cooler than more massive stars, meaning they can host habitable zones (regions of a solar system that are temperate enough for worlds to harbor liquid water) close to themselves, where planets often form. Scientists are also using the James Webb Space Telescope to discern if such rocky worlds around red dwarfs could host atmospheres, like Venus or Earth.
If Barnard's Star was hiding four rocky sub-Earths, what else is hiding out there in the cosmos?
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
11 hours ago
- Yahoo
Nuclear fusion record smashed as German scientists take 'a significant step forward' to near-limitless clean energy
When you buy through links on our articles, Future and its syndication partners may earn a commission. A recently concluded experimental campaign at the Wendelstein 7-X stellarator at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany has smashed previous fusion records and set a new benchmark for reactor performances. Nuclear fusion offers a tantalizing promise of unlimited clean energy. By smashing together isotopes (or different versions) of hydrogen at incredibly high temperatures, the resulting superheated plasma of electrons and ions fuses into heavier atoms, releasing a phenomenal amount of energy in the process. However, while this fusion reaction is self-sustaining under the extraordinary temperatures and pressures within stars, recreating these conditions on Earth is a huge technical challenge — and current reactor concepts still consume more energy than they are able to produce. Stellarators are one of the most promising reactor designs, so named for their mimicry of reactions in the sun. They use powerful external magnets to control the high-energy plasma within a ring-shaped vacuum chamber and maintain a stable, high pressure. Unlike simpler tokamak reactors — which pass a high current through the plasma to generate the required magnetic field — stellarators' external magnets are better at stabilizing the plasma through the fusion reactions, a feature that will ultimately be necessary when translating the technology to commercial power plants. In the recent experiments, the W7-X stellarator outperformed previous benchmarks set by the decommissioned tokamak reactors JT60U in Japan and JET in the UK, especially over how long the plasma can be sustained. Related: Nuclear fusion could be the clean energy of the future Most notably, the international team revealed that the reactor had reached a new record high triple product — a key metric for the success of fusion power generators. The triple product is a combination of the density of particles in the plasma, the temperature required for these particles to fuse, and the energy confinement time (a measure of how well the thermal energy is held by the system). A certain minimum value called the Lawson criterion marks the point at which the reaction produces more energy than it uses and becomes self-sustaining, so a higher triple product indicates a more efficient reaction. "The new record is a tremendous achievement by the international team," said Thomas Klinger, Head of Operations at Wendelstein 7-X and Head of Stellarator Dynamics and Transport at IPP in a statement. "Elevating the triple product to tokamak levels during long plasma pulses marks another important milestone on the way toward a power-plant-capable stellarator." Key to the success of this latest milestone was the development of a new fuel pellet injector that combined continuous refueling of the reactor with pulsed heating to maintain the required plasma temperature. Over a 43-second period, 90 frozen hydrogen pellets were fired into the plasma at up to 2,600 feet (800 metres) per second, roughly the speed of a bullet. Pre-programmed pulses of powerful microwaves heated the plasma, which reached a peak temperature of 30 million degrees C, and this coordination between the microwave pulses and the pellet injection crucially extended how long the plasma could be stably maintained. RELATED STORIES —Physicists solve nuclear fusion mystery with mayonnaise —There's 90,000 tons of nuclear waste in the US. How and where is it stored? —Just a fraction of the hydrogen hidden beneath Earth's surface could power Earth for 200 years, scientists find This same campaign also increased the energy turnover of the reaction to 1.8 gigajoules over a six-minute run, smashing the reactor's previous record of 1.3 gigajoules from February 2023. Energy turnover is a combination of the heating power and plasma duration of a fusion reactor and an indication of the reactor's ability to sustain the high-energy plasma. It is therefore another crucial parameter for future power plant operation. The new value even exceeds the record achieved by the Experimental Advanced Superconducting Tokamak (EAST) in China earlier this year, further evidencing stellarators' potential. "The records of this experimental campaign are much more than mere numbers. They represent a significant step forward in validating the stellarator concept—made possible through outstanding international collaboration," summarized Robert Wolf, Head of Stellarator Heating and Optimization at IPP in statement.
Yahoo
a day ago
- Yahoo
A new observatory is assembling the most complete time-lapse record of the night sky ever
On 23 June 2025, the world will get a look at the first images from one of the most powerful telescopes ever built: the Vera C. Rubin Observatory. Perched high in the Chilean Andes, the observatory will take hundreds of images of the southern hemisphere sky, every night for 10 years. In doing so, it will create the most complete time-lapse record of our Universe ever assembled. This scientific effort is known as the Legacy Survey of Space and Time (LSST). Rather than focusing on small patches of sky, the Rubin Observatory will scan the entire visible southern sky every few nights. Scientists will use this rolling deep-sky snapshot to track supernovae (exploding stars), asteroids, black holes, and galaxies as they evolve and change in real time. This is astronomy not as a static snapshot, but as a cosmic story unfolding night by night. At the heart of the observatory lies a remarkable piece of engineering: a digital camera the size of a small car and weighing over three tonnes. With a staggering 3,200 megapixels, each image it captures has enough detail to spot a golf ball from 25km away. Get your news from actual experts, straight to your inbox. Sign up to our daily newsletter to receive all The Conversation UK's latest coverage of news and research, from politics and business to the arts and sciences. Each image is so detailed that it would take hundreds of ultra-high-definition TV screens to display it in full. To capture the universe in colour, the camera uses enormous filters — each about the size of a dustbin lid — that allow through different types of light, from ultraviolet to near-infrared. The observatory was first proposed in 2001, and construction at the Cerro Pachón ridge site in northern Chile began in April 2015. The first observations with a low-resolution test camera were carried out in October 2024, setting up the first images using the main camera, to be unveiled in June. The observatory is designed to tackle some of astronomy's biggest questions. For instance, by measuring how galaxies cluster and move, the Rubin Observatory will help scientists investigate the nature of dark energy, the mysterious force driving the accelerating expansion of the Universe. As a primary goal, it will map the large-scale structure of the Universe and investigate dark matter, the invisible form of matter that makes up 27% of the cosmos. Dark matter acts as the 'scaffolding' of the universe, a web-like structure that provides a framework for the formation of galaxies. The observatory is named after the US astronomer Dr Vera Rubin, whose groundbreaking work uncovered the first strong evidence for dark matter – the very phenomenon this telescope will explore in unprecedented detail. As a woman in a male-dominated field, Rubin overcame numerous obstacles and remained a tireless advocate for equality in science. She died in 2016 at the age of 88, and her name on this observatory is a tribute not only to her science, but to her perseverance and her legacy of inclusion. Closer to home, Rubin will help find and track millions of asteroids and other objects that come near Earth – helping warn astronomers of any potential collisions. The observatory will also monitor stars that change in brightness, which can reveal planets orbiting them. And it will capture rare and fleeting cosmic events, such as the collision of very dense objects called neutron stars, which release sudden bursts of light and ripples in space known as gravitational waves. What makes this observatory particularly exciting is not just what we expect it to find, but what we can't yet imagine. Many astronomical breakthroughs have come from chance: strange flashes in the night sky and puzzling movements of objects. Rubin's massive, continuous data stream could reveal entirely new classes of objects or unknown physical processes. But capturing this 'movie of the universe' depends on something we often take for granted: dark skies. One of the growing challenges facing astronomers is light pollution from satellite mega-constellations – a group of many satellites working together. These satellites reflect sunlight and can leave bright streaks across telescope images, potentially interfering with the very discoveries Rubin is designed to make. While software can detect and remove some of these trails, doing so adds complexity, cost and can degrade the data. Fortunately, solutions are already being explored. Rubin Observatory staff are developing simulation tools to predict and reduce satellite interference. They are also working with satellite operators to dim or reposition spacecraft. These efforts are essential – not just for Rubin, but for the future of space science more broadly. Rubin is a collaboration between the US National Science Foundation and the Department of Energy, with global partners contributing to data processing and scientific analysis. Importantly, much of the data will be publicly available, offering researchers, students and citizen scientists around the world the chance to make discoveries of their own. The 'first-look' event, which will unveil the first images from the observatory, will be livestreamed in English and Spanish, and celebrations are planned at venues around the world. For astronomers, this is a once-in-a-generation moment – a project that will transform our view of the universe, spark public imagination and generate scientific insights for decades to come. This article is republished from The Conversation under a Creative Commons license. Read the original article. Noelia Noël does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Yahoo
2 days ago
- Yahoo
Richard Garwin obituary
The Nobel laureate Enrico Fermi called his student Richard Garwin 'the only true genius I've ever met'. Garwin, who has died aged 97, is perhaps the most influential 20th-century scientist that you have never heard of, because he produced much of his work under the constraints of national or commercial secrecy. During 40 years working at IBM on an endless stream of research projects, he was granted 47 patents, in diverse areas including magnetic resonance imaging, high-speed laser printers and touch-screen monitors. Garwin, a polymath who was adviser to six US presidents, wrote papers on space weapons, pandemics, radioactive waste disposal, catastrophic risks and nuclear disarmament. Throughout much of that time, a greater secret remained: in 1951, aged 23, he had designed the world's first hydrogen bomb. Ten years earlier, Fermi had had the insight that an atomic bomb explosion would create extraordinarily high pressures and temperatures like those in the heart of the sun. This would be hot enough to ignite fusion of hydrogen atoms, the dynamical motor that releases solar energy, with the potential to make an explosion of unlimited power. This is known as a thermonuclear explosion, reflecting the high temperature, in contrast to an atomic bomb, which starts at room temperature. Detonation of the atomic bomb in 1945 gave the proof of the first part of this concept, but in secret lectures at the Los Alamos laboratory in New Mexico that summer, Fermi admitted that although an exploding atomic bomb could act as the spark that ignites hydrogen fuel, he could find no way of keeping the material alight. In 1949, the USSR exploded its first atomic bomb and within months President Harry S Truman announced that the US would develop 'the so-called hydrogen or superbomb'. In the same year, Garwin graduated from the University of Chicago with a doctorate in physics and became an instructor in the physics department. Fermi invited him to join Los Alamos as a summer consultant, to help to realise Truman's goal. Early in 1951 Edward Teller and Stanislaw Ulam made the theoretical breakthrough: a bomb consisting of two physically separated parts in a cylindrical casing. One component was an atom bomb whose explosion would emit both atomic debris and electromagnetic radiation. The radiation would move at the speed of light and flood the interior with rays that would compress the second component containing the hydrogen fuel. The impact of the debris an instant later would complete the ignition. This one-two attack on the hydrogen fuel was the theoretical idea that Teller asked Garwin to develop. Garwin turned their rough idea into a detailed design that remains top secret even today. The device, codenamed Ivy Mike, was assembled on the tiny island of Elugelab in the Enewatak Atoll of the Marshall Islands in the south Pacific. Weighing 80 tonnes and three storeys high, it looked more like an industrial site than a bomb. It was undeliverable by an aeroplane but designed solely to prove the concept. On 1 November 1952, the explosion, which was 700 times more powerful than the atomic bombs dropped over Hiroshima or Nagasakai, instantly wiped Elugelab from the face of the earth and vaporised 80m tonnes of coral. In their place was a crater a mile across into which the waters of the Pacific Ocean poured. The mushroom cloud reached 80,000ft in 2 minutes and continued to rise until it was four times higher than Mount Everest, stretching 60 miles across. The core was 30 times hotter than the heart of the sun, the fireball 3 miles wide. The sky shone like a red-hot furnace. For several minutes, many observers feared that the test was out of hand and that the whole atmosphere would ignite. None of the news reports mentioned Garwin's name; he was a scientific unknown, a junior faculty member at the University of Chicago. A month later he joined the International Business Machines Corporation, IBM, in Yorktown Heights, New York. The post included a faculty appointment at Columbia, which gave him considerable freedom to pursue his research interests and to continue as a government consultant at Los Alamos and, increasingly, in Washington. Born in Cleveland, Ohio, the elder son of Leona (nee Schwartz), a legal secretary, and Robert Garwin, a teacher of electronics at a technical high school by day and a projectionist at a cinema at night, Dick was a prodigy; by the age of five he was repairing family appliances. After attending public schools in Cleveland, in 1944 he entered Case Western Reserve University. In 1947, he graduated with a bachelor's degree in physics and married Lois Levy; the couple moved to Chicago, where Garwin was tutored by Fermi. He earned a master's degree in 1948 and a doctorate, aged 21, in 1949. In his doctoral exams he scored the highest marks ever recorded in the university. In addition to his applied science research for IBM, he worked for decades on ways of observing gravitational waves, ripples in space-time predicted by Albert Einstein. His detectors successfully observed the ripples in 2015. This has opened a new window on the universe, in revealing the dynamics of black holes. Throughout his career he continued to advise the US government on national defence issues. This included prioritising targets in the Soviet Union, warfare involving nuclear-armed submarines, and satellite reconnaissance and communication systems. A strong supporter of reducing nuclear arsenals, he advised the US president Jimmy Carter during negotiations with the Soviet president Leonid Brezhnev on the 1979 Strategic Arms Limitation Treaty. He believed that the US should nonetheless maintain a strategic balance of nuclear power with the Soviet Union and opposed policies that could upset that: 'Moscow is more interested in live Russians than dead Americans.' After retiring from the University of Chicago in 1993, he chaired the State Department's arms control and non-proliferation advisory board until 2001. In 2002 he was awarded the National Medal of Science, the US's highest scientific award, and in 2016 the Presidential Medal of Freedom, the nation's highest civilian award. In presenting the award, Barack Obama remarked that Garwin 'never met a problem he didn't want to solve'. Lois died in 2018. Garwin is survived by two sons and a daughter, five grandchildren and a great-grandchild. • Richard Lawrence Garwin, physicist, born 19 April 1928; died 13 May 2025