logo
How often does it flood in Carolina Beach? More often than you probably think

How often does it flood in Carolina Beach? More often than you probably think

Yahoo9 hours ago

A new research paper raises concerns that coastal flooding in places like Carolina Beach is occurring much more frequently, and lasting longer, than official statistics show.
By using localized sensors instead of relying on tidal gauges, which are often miles away from coastal areas that frequently flood, the study by researchers from N.C. State and the University of North Carolina showed how many instances of non-storm related flooding is slipping through the official cracks.
"Our research shows you need land-based measures of flooding to capture the burden on coastal residents, which can inform policy and planning decisions moving forward,' said Dr. Katharine Anarde, a coastal engineer with N.C. State and co-author of the study.
The paper, "Land-based Sensors Reveal High Frequency of Coastal Flooding," was published June 2 in the journal Nature Communications Earth & Environment.
Dr. Miyuki Hino, a city and regional planning expert from UNC and the other co-author of the paper, said the study's finding are a real wake-up call for coastal communities.
'The time for getting your head around the problem and developing potential solutions and evaluating what adaptions will work in your town, that time is now," she said. "This study really points to the urgency of this problem.'
Anarde and Hino also are part of the Sunny Day Flooding Project, an initiative to help researchers, officials and residents better understand chronic flooding in coastal communities and the impact it has on people, property and businesses in those areas.
LIVING WITH WATER: Why nature-based climate solutions are growing in popularity in the Wilmington area
Carolina Beach is a prime example of a coastal community in the bulls-eye of our changing climate. Rampant development − especially on the town's north end, decades-old and overwhelmed stormwater drainage systems, and rising seas means low-lying areas already susceptible to flooding are seeing more and more impacts from non-storm tidal events. The result is inundated streets, dangerous driving conditions, increased salt water wear-and-tear on infrastructure and property, and residents sometimes having to wade through water just to access homes and businesses.
According to the National Oceanic and Atmospheric Administration, high-tide, sunny day or nuisance flooding − which is flooding that's not associated with storm surge kicked up by a storm − is happening twice as often as it did in 2000.
But the new study asserts that the actual number of incidents of flooding places vulnerable coastal areas like Carolina Beach experience is even greater.
Currently, there are two widely accepted 'thresholds' used to infer flooding on land based on tide gauge data: NOAA's high tide flooding threshold and the National Weather Service's minor flood threshold. But Wilmington's official tidal gauge is at the base of the Cape Fear Memorial Bridge, nearly 14 miles north of Carolina Beach Town Hall.
By using land-based sensors installed in flood-prone areas of Carolina Beach, Beaufort and Sea Level, the last two communities in Carteret County, researchers found flooding in the three N.C. coastal areas to be much more rampant than what was being officially reported − sometimes several magnitudes more.
From May 2023 through April 2024, Carolina Beach flooded 65 days. Data from the local sensors also showed the flooding was lasting longer than what was captured by the federal models.
Hinro and Anarde said the discrepancies between flooding on land and tide-gauge estimates are due to unique characteristics of each community, including topography and drainage issues, and incorporating heavy rainfall events that cannot be captured at tide gauges.
The researchers added that coastal flooding will become much more frequent and widespread in the coming years and decades due to sea-level rise fueled by climate change, making the value of having local data that much more valuable.
WATER WOES: As seas continue to rise, Carolina Beach mulls solutions to its chronic flooding woes
For residents in these coastal communities, the study's findings probably don't come as a surprise.
The incessant flooding also causes headaches for local officials looking for solutions that are likely to be expensive, unpopular, or both.
In Carolina Beach, the town has partnered with the Sunny Day Flooding Project and a group of local residents to develop possible mitigation efforts in response to the chronic flooding woes in and around Canal Drive. Those potential solutions have been fed into a computer model that simulates a number of factors impacting flooding in the town, including wind, rain, groundwater levels and infrastructure limits.
Those adaptation options, all of which carry pros and cons, will be presented to town council at its July meeting.
With flooding concerns expected to keep increasing, Anarde and Hinro said they are eager to keep their research going to help local communities in their ongoing adaptation efforts. But like many scientific endeavors around the country, their research is largely funded by Washington, and that's creating a lot of uncertainty these days amid moves by the Trump administration to rein in federal spending.
Still, the researchers said they are determined to keep pushing to help coastal communities become aware and develop mitigation strategies that work for their specific situations and towns.
"This isn't a future problem," Anarde said. "This is a now problem."
Reporter Gareth McGrath can be reached at GMcGrath@Gannett.com or @GarethMcGrathSN on X/Twitter. This story was produced with financial support from the Green South Foundation and the Prentice Foundation. The USA TODAY Network maintains full editorial control of the work.
This article originally appeared on Wilmington StarNews: How often does it flood in Carolina Beach, NC?

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store