logo
How a 'mudball' meteorite survived space to land in the jungles of Central America

How a 'mudball' meteorite survived space to land in the jungles of Central America

Yahoo03-04-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
The pieces of a meteorite that fell in Costa Rica in 2019 are so unusual that scientists believe it had moved through space relatively unscathed — that is, until it encountered our planet. This is in stark contrast to other typical meteorites that show the wounds of having been in numerous collisions before reaching Earth.
The meteorites were recovered from near the Costa Rican town of Aguas Zarcas, and are of a type referred to as 'mudballs', in the sense that they contain water-rich minerals.
The findings have resulted in a reappraisal of these so-called mudball meteorites. It had been assumed that their high content of water-rich minerals would make them structurally weaker than other types of meteorites, rendering them more susceptible to damage or burning. But, "Apparently, [the presence of water-rich minerals] … does not mean they are weak," said Peter Jenniskens, a meteor astronomer from the SETI Institute and NASA Ames Research Center in California, in a statement.
Scientists say the discovery rivals one of the largest discoveries of meteorites nearly 50 years prior. "Twenty-seven kilograms [60lbs] of rocks were recovered, making this the largest fall of its kind since similar meteorites fell near Murchison in Australia in 1969," said Jenniskens.
The Murchison meteorite fall occurred just two months after the Apollo 11 mission. The recovered pieces showed that evidence of having been altered by liquid water on its parent body before an impact smashed apart that parent body and sent the Murchison and, later, the Aguas Zarcas meteoroids spinning into space. (Meteoroids are what we call meteorites when they are in space.)
Video camera footage shows the 2019 mudball meteor entering the atmosphere from the west-north-west direction over Costa Rica at a steep, almost vertical angle of 81 degrees, and at a velocity of 9 miles (14.6 kilometers) per second. This steep angle allowed the meteor passed through less of Earth's atmosphere than it would have if it had approached on a shallower angle. That means more of the original meteoroid survived the fiery passage through the sky above Costa Rica.
Based on the incoming meteor's trajectory, "We can tell that this object came from a larger asteroid low in the asteroid belt, likely from its outer regions," said Jenniskens.
As it entered Earth's atmosphere, the rocky body is estimated to have been about 23.6 inches (60 centimeters) across. Friction with the atmosphere generated heat that melted its surface, stripping away much of the rock in a process known as ablation as it began to burn up.
"It penetrated deep into Earth's atmosphere, until the surviving mass shattered at 15.5 miles (25 kilometers) above the Earth's surface, where it produced a bright flash that was detected by satellites in orbit," said Jenniskens.
Those satellites were the Geostationary Operational Environment Satellites (GOES) 16 and 17 and their lightning detectors, which are Earth-observing satellites operated by NASA and the National Oceanic and Atmospheric Administration (NOAO).
The fragments scattered themselves across the soft ground of Costa Rican jungle and grasslands, where they were subsequently found by meteorite hunters and volunteers. But the meteorites had a slightly unusual appearance.
"The Aguas Zarcas fall produced an amazing selection of fusion-crusted stones with a wide range of shapes," said meteor scientist Laurence Garvie of the Buseck Center for Meteorite Studies at Arizona State University. "Some stones have a beautiful blue iridescence to the fusion crust."
The fusion crust is the glassy, melted surface of a meteorite after it has endured ablation.
Usually, meteorites have some flat sides, where they have broken apart as the result of stress fractures in the original meteoroid that were placed there by collisions in space with other meteoroids. The rounded rather than flat shapes of the Aguas Zarcas meteorites suggested that the meteoroid had travelled through space relatively unscathed after being blasted off its parent body.
It has even been possible to calculate how long ago that was. Exposure to cosmic rays alters the composition of a meteoroid, so the degree of alteration tells us how long a meteoroid has been in space after breaking off its parent body.
"The last collision experienced by this rock was two million years ago," said cosmochemist Kees Welton of UC Berkeley, who led this part of the study.
"After getting loose, it took two million years to hit the tiny target of Earth, all the time avoiding getting cracked," added Jenniskens. This seems surprisingly recent, given the 4.6-billion-year history of the solar system.
"We know of other Murchison-like meteorites that broke off at approximately the same time [as Murchison], and likely in the same event, but most broke much more recently," said Welton, with the Aguas Zarcas meteorites exemplifying the point.
RELATED STORIES:
— What are meteorites?
— Watch (and hear!) a meteorite impact on doorbell camera video in a world 1st
— Meteorites could have brought all 5 genetic 'letters' of DNA to early Earth
Perhaps it is appropriate that the last word goes to Gerado Soto of the University of Costa Rica in San José, who draws similarities with the Murchison meteorite fall and its closeness in time to Apollo 11.
"The fall of Aguas Zarcas was huge news in the country. No other fireball was as widely reported and then recovered as stones on the ground in Costa Rica in the past 150 years," he said. "The recovery of Aguas Zarcas [meteorites], too, was a small step for man, but a giant leap in meteoritics."
The findings were published on March 29 in the journal Meteoritics & Planetary Science.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The sun: Facts about the bright star at the center of the solar system
The sun: Facts about the bright star at the center of the solar system

Yahoo

time4 hours ago

  • Yahoo

The sun: Facts about the bright star at the center of the solar system

When you buy through links on our articles, Future and its syndication partners may earn a commission. Quick facts about the sun How big it is: 865,000 miles (1.392 million kilometers) across How far away it is: 93 million miles (150 million km) What type of star it is: A yellow dwarf star The sun is the star at the center of our solar system. It's the largest, brightest and most massive object in the solar system, and it provides the light and heat that life on Earth depends on. Powered by a process called nuclear fusion, the sun can get hotter than 27 million degrees Fahrenheit (15 million degrees Celsius). The sun has been around for over 4 billion years, but one day, it will run out of fuel. Read on to learn more about what our local star is made of, how it formed and what will happen when it dies. Over 1 million Earths could fit inside the sun. The sun may look yellow from Earth, but it actually releases every color of light, meaning its true color is white. The sun is unique in that it's the only star in our solar system. Up to 85% of stars have at least one companion star. The sun contains over 99% of the mass of our entire solar system. Like Earth, the sun also rotates on its axis. Each rotation takes about 27 Earth days. The sun is a ball of gas and plasma made mostly of hydrogen. The sun uses these vast stores of hydrogen to generate the heat and light that sustain our planet. It does this through a process called nuclear fusion, in which two hydrogen atoms combine to create a different element, helium. The sun is about three-quarters hydrogen and one-quarter helium, with tiny amounts of metals. The larger a star is, the more rapidly it burns through its hydrogen. Some of the largest known stars — such as those with masses 40 times that of the sun — will live just 1 million years. By contrast, the sun will have a lifetime of around 10 billion years. Different parts of the sun reach different temperatures. The sun's core gets as hot as 27 million F (15 million C). The part of the sun we can see from Earth is called the photosphere, which is the "surface" of the huge ball of plasma. The temperature of the photosphere is about 9,900 F (5,500 C). Above the photosphere is the loose outer atmosphere of the sun, known as the corona. We can't see the corona from Earth under ordinary conditions, though it can be photographed during a total solar eclipse. The sun formed around 4.5 billion years ago. At that time, the area of the Milky Way galaxy that would become the solar system was a dense cloud of gas — the leftovers of an earlier generation of stars. The densest region of this cloud collapsed and created a seed, called a protostar, that would become the sun. As this young protostar grew, planets, moons and asteroids formed from the remaining raw material, and then began circling around the growing sun as they were sucked into orbit by the star's powerful gravity. At the heart of the sun, this same force sparked nuclear fusion. The heat and light from this nuclear reaction allowed life on Earth to evolve and prosper. However, this reaction will eventually lead to the sun's death when it runs out of nuclear fuel. The sun is around halfway through its lifetime. Our star is locked in a constant battle as outward pressure from nuclear fusion fights the inward pull of gravity. When the sun runs out of hydrogen in about 5 billion years, the inward force of gravity will win. The center of the sun will collapse, compressing into a dense core. Helium will start fusing into even denser elements, like carbon, nitrogen and oxygen. While this happens, the heat generated by the fusing of these elements will push the sun's outer shell to swell. This will be bad news for the inner planets of the solar system — including Earth. As the sun becomes a type of star called a red giant, its outer shell will expand to the orbit of Mars, gobbling up Mercury, Venus, Earth and Mars. But the red-giant phase is not when the sun will die. The outer layers that swell during the red-giant phase will become a shell of gas called a surrounding planetary nebula. This shell will be shed after approximately 1 billion years. This will expose the star's smoldering core, which, by this point, will be a dense ball called a white dwarf. As a white dwarf, the sun will dim. The material from the planetary nebula will spread out into the galaxy and form the building blocks of the next generation of stars and planets. Image 1 of 5 Space agencies have launched many spacecraft that help us observe and gather data about the sun. Pictured here is an artist's concept of the sun being observed by NASA's Parker Solar Probe. Image 2 of 5 The red giant star Camelopardalis. The sun will eventually become a red giant, and as it expands, it will engulf its nearest planets, including Earth. Image 3 of 5 Sunspots are darker, cooler areas that temporarily appear on the sun. They're caused by changes in the sun's magnetic field. Image 4 of 5 Solar storms happen when the sun releases flares of energy and particles. Image 5 of 5 Auroras on Earth happen when charged particles from the sun interact with our planet's atmosphere. Is Earth getting closer to the sun, or farther away? Where on Earth does the sun rise first? What color is the sun?

Catch Jupiter and Mercury side by side in the evening sky this week
Catch Jupiter and Mercury side by side in the evening sky this week

Yahoo

time4 hours ago

  • Yahoo

Catch Jupiter and Mercury side by side in the evening sky this week

When you buy through links on our articles, Future and its syndication partners may earn a commission. The nights surrounding June 7 will see Jupiter and Mercury crowd together close to the horizon in the northwestern sky. Stargazers in the U.S. will need a clear horizon to spot the planetary duo hanging less than 10 degrees (about a fist's width at arm's length) above the western horizon when the sun sets on June 6, with Jupiter positioned to the upper left of Mercury. The planets will only be visible for around 45 minutes after sunset, at which time they will follow our star below the horizon. The following evenings will see fleet-footed Mercury draw level with Jupiter, before rising above and away from the gas giant in the night sky as a result of the smaller world's tight orbit around the sun. On June 7, the planets will pass a little over two degrees from each other - close enough to fit comfortably inside the field of view of a pair of 10x50 binoculars. Ensure that the sun has set entirely below the horizon before you point any binoculars or telescopic gear in its direction. Side by side in the night sky, the two points of light appear similar in nature, belying the extreme differences of the solar system bodies they represent. Jupiter is a gas giant and the largest planet in our solar system, capable of fitting the smallest planet - rocky Mercury - within its expanse many thousands of times over. Want to find the planets of our solar system for yourself? The Celestron NexStar 4SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 4SE review. Their orbits are similarly divergent. It takes Jupiter 12 Earth years to complete a single lap of our star while travelling at an average orbital distance of 484 million miles (778 million kilometers). Counterintuitively, the gas giant has the shortest day of any planet in the solar system, taking a mere 9.9 hours to spin on its axis, according to NASA. Mercury, on the other hand, is separated on average by 29 million miles (47 million kilometers) from our star and completes a circuit of the sun every 88 Earth days — much shorter than the 176 Earth days that it takes for the tortured world to complete a full day-night cycle. Night sky enthusiasts hoping to explore the planets of our solar system for themselves should check out our guides to the best binocular and telescope deals. Those new to the night sky should also read our guide detailing the top smartphone stargazing apps available in 2025. Editor's Note: If you capture a picture of Jupiter and Mercury and want to share it with readers, then please send it along with your comments, name and the location of the shoot to spacephotos@

Many Dead Sea Scrolls may be older than experts thought, AI analysis suggests
Many Dead Sea Scrolls may be older than experts thought, AI analysis suggests

Yahoo

time4 hours ago

  • Yahoo

Many Dead Sea Scrolls may be older than experts thought, AI analysis suggests

When you buy through links on our articles, Future and its syndication partners may earn a commission. Many of the Dead Sea Scrolls may be older than experts thought, according to an artificial intelligence (AI) analysis. Consisting of about 1,000 ancient manuscripts etched onto animal skin, papyrus and copper, the Dead Sea Scrolls contain the earliest known versions of texts from the Hebrew Bible — including copies of the books of Genesis, Exodus, Isaiah, Kings and Deuteronomy — and date from the third century B.C. to the first century A.D. Now, scientists have used an AI program, dubbed Enoch, to analyze the handwriting patterns on the scrolls, revealing that they may be older than experts thought. The study authors say their findings, published June 4 in the journal PLOS One, are a significant step in dating some of the earliest versions of the Bible. However, not all experts are convinced. "With the Enoch tool we have opened a new door into the ancient world, like a time machine, that allows us to study the hands that wrote the Bible," lead study author Mladen Popović, director of the Qumran Institute at the University of Groningen in the Netherlands, said in a statement. "Especially now that we have established, for the first time, that two biblical scroll fragments come from the time of their presumed authors." Discovered by Bedouin shepherds inside the West Bank's caves of Qumran from 1946 to 1947, the ancient manuscripts range from legal documents and calendars to sections of the Hebrew Bible and psalms, written mostly in Hebrew but also in Aramaic and Greek. Previous dating of the scrolls relied on paleography — the study of ancient writing systems — with some undergoing radiocarbon dating in the 1990s. However, castor oil had been applied to some of the manuscripts in modern times to improve their legibility. This oil is also a contaminant that can disrupt radiocarbon dating, so the results from these techniques remain a topic of debate. Related: Ancient 'curse tablet' may show earliest Hebrew name of God In an attempt to clear things up, the researchers first cleaned 30 samples from different manuscripts to remove the castor oil, before successfully radiocarbon-dating 27 of them. They found that two of these scroll fragments were younger than past analyses suggested but that other fragments were older. Then, the scientists set about creating their Enoch AI model. Enoch was trained on the handwriting of 24 of the newly dated manuscripts and their radiocarbon dates. After verifying the model with 13 further selected images from the same manuscripts, the researchers presented it with 135 undated manuscripts. They found that it agreed with the estimates made by scholars 79% of the time. Yet the results for the remaining 21% of the scrolls point to a mystery, with Enoch giving them a range of dates that could make them older, hard to determine, or even a century younger than initial estimates. They also suggest that two different writing styles, known as the Hasmonean and Herodian scripts (named after the Jewish Hasmonean dynasty and Herod, the Roman client king, respectively), could have overlapped for longer than previously thought. Nonetheless, Enoch also corroborates earlier paleography, notably for a scroll titled 4Q114, which contains three chapters from the Book of Daniel. Analysts initially estimated 4Q114's writing to have been inked during the height of the Maccabee uprising in 165 B.C. (a part of the Hanukkah story) due to its description of Antiochus IV's desecration of the Second Temple in Jerusalem. The AI model's estimate also falls within this range, between 230 B.C. and 160 B.C. But for some paleographers, the results are hardly surprising. RELATED STORIES —2,700-year-old archaeological site in Jordan may be a biblical place visited by King David —20 of the most bizarre stories from the Bible —Ancient Yahweh worshipper's jar bears Hebrew script in biblical city "The results of this study are very interesting, and presumably important, but not Earth-shattering," Christopher Rollston,a professor and chair of biblical and Near Eastern languages and civilizations at The George Washington University, told Live Science in an email. "Most of the conclusions of this article also dovetail with what the great palaeographers in the field, such as the late Frank Moore Cross, had already stated more than 60 years ago." Rollston also criticized the notion that the new tool could enable researchers to "study the hands that wrote the Bible" as "at the very least, gross hyperbole." No manuscripts of the Hebrew Bible date to the First Temple period (circa 1200 to 586 B.C.), when it was originally composed, or to the early parts of the Second Temple period (538 B.C. to A.D. 70), he said. He noted that AI can be useful, but it should only be one of many techniques used to study ancient texts like the Dead Sea Scrolls. "Enoch could and should never be the only tool in the toolbox of someone wishing to determine the date for the writing of a manuscript. After all, human handwriting, and all of its variations and idiosyncratic features, is a deeply human thing," Rollston added. "Machines can be helpful in isolating features of a script, but the presence of a gifted palaeographer is at least as valuable as a machine-learning tool."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store