
How will Earth take its last breath? New research gives a detailed description of how life on planet will meet its end
A new study, employing NASA's planetary modeling, predicts Earth's oxygen will vanish in roughly one billion years, much sooner than previously thought. Led by Toho University, the research highlights the sun's aging process as a key factor, causing increased water evaporation, rising temperatures, and a failing carbon cycle.
Tired of too many ads?
Remove Ads
What has the research revealed?
Tired of too many ads?
Remove Ads
Researchers shorten Earth's lifeline
A groundbreaking study by researchers at Toho University, using NASA's advanced planetary modeling, has predicted a major shift in Earth's atmosphere that could make life as we know it impossible.Published in Nature Geoscience, the research suggests that Earth's oxygen could vanish in about one billion years—shedding new light on the long-term evolution of our planet's atmosphere.The team ran 400,000 simulations to model how Earth's atmosphere might change as the sun grows hotter with age. While the predicted changes lie far in the future, the findings offer critical insights into planetary science and the eventual fate of Earth's biosphere.The study titled "The Future Lifespan of Earth's Oxygenated Atmosphere" explores a future in which oxygen becomes increasingly scarce due to natural changes in the planet's systems. Led by Kazumi Ozaki, an assistant professor at Toho University in Tokyo, the research examines the geological and astronomical factors influencing long-term shifts in Earth's atmosphere.The role of the Sun One of the core factors leading to oxygen depletion is the sun's inevitable aging process. As the sun ages, it will gradually become hotter and brighter. This increase in solar radiation will significantly impact Earth's climate, leading to a series of irreversible changes:As temperatures rise, Earth's water bodies will evaporate more rapidly, increasing atmospheric water vapor levels. This warming will also cause surface temperatures to escalate, gradually creating conditions unsuitable for sustaining life. The heat will disrupt the carbon cycle—a crucial process that regulates atmospheric carbon dioxide—weakening its ability to maintain balance. As a result, plant life will begin to die off, stopping the production of oxygen through photosynthesis. Over time, these cascading effects will lead to a dramatic loss of oxygen in Earth's atmosphere, rendering the planet increasingly uninhabitable.The research revealed that as the carbon cycle deteriorates, the atmosphere will revert to a composition reminiscent of early Earth, characterized by high levels of methane and low oxygen. This transformation mirrors the state before the Great Oxidation Event—a period when Earth's atmosphere became rich in oxygen due to the proliferation of photosynthetic organisms.Earlier scientific models suggested that Earth's biosphere would last up to two billion years, primarily due to overheating and the eventual depletion of CO₂ necessary for photosynthesis. However, this new research narrows the timeframe, suggesting a much earlier end to oxygen production.Kazumi Ozaki emphasized that while the eventual demise of Earth's biosphere was acknowledged, pinpointing the timing and the precise process of deoxygenation remained elusive. This study, using advanced supercomputer simulations, provides a clearer understanding by simulating numerous potential scenarios.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


India Today
an hour ago
- India Today
This volcano on Mars is taller than Earth's Mount Everest
NASA's 2001 Mars Odyssey orbiter has delivered a stunning new picture from Mars, capturing the colossal Arsia Mons volcano piercing through a dense layer of early morning panorama, taken on May 2, marks the first time one of the planet's massive volcanoes has been imaged on the Martian horizon — a view reminiscent of how astronauts see Earth's mountains from the International Space Mons, the southernmost of the Tharsis Montes trio, stands at an awe-inspiring 12 miles (20 kilometers) high, dwarfing Earth's tallest volcano, Mauna Loa, which rises 6 miles (9 kilometers) above the seafloor. Arsia Mons, an ancient Martian volcano, was captured before dawn on May 2, 2025, by NASA's 2001 Mars Odyssey orbiter. (Photo: Nasa) The volcano's summit was seen poking above a canopy of water ice clouds, a phenomenon common in the region during Mars' aphelion, when the planet is farthest from the Sun. This period creates the 'aphelion cloud belt,' a striking band of clouds that forms across the Martian equator and is prominently displayed in Odyssey's new Odyssey spacecraft, launched in 2001, is the longest-running mission orbiting another planet. To capture this unique image, the orbiter rotated 90 degrees, allowing its Thermal Emission Imaging System (THEMIS) camera—designed to study the Martian surface—to photograph the horizon innovative angle enables scientists to observe layers of dust and water ice clouds, as well as seasonal changes in the Martian atmosphere. Arsia Mons is the southernmost of the three volcanoes that make up Tharsis Montes, shown in the center of this cropped topographic map of Mars. (Photo: Nasa) 'We're seeing some really significant seasonal differences in these horizon images,' said Michael D. Smith, planetary scientist at NASA's Goddard Space Flight Center. 'It's giving us new clues to how Mars' atmosphere evolves over time'.Understanding these clouds is crucial for predicting Martian weather and preparing for future missions, including safe landings. Arsia Mons itself is not only a geological marvel—measuring 270 miles (450 kilometers) in diameter—but also a key to understanding Mars' atmospheric Hill, operations lead for Odyssey's THEMIS camera, summed up the excitement: 'We picked Arsia Mons hoping we would see the summit poke above the early morning clouds. And it didn't disappoint'.


Economic Times
2 hours ago
- Economic Times
Dickson Fjord's 650-foot mega-tsunami: How a giant wave sent shockwaves worldwide
Mega-tsunamis rock Greenland's Fjord Seiches vs. Tsunamis: The science behind the waves Live Events How advanced satellites and machine learning solved the puzzle Climate Change: The silent driver A breakthrough in Earth monitoring (You can now subscribe to our (You can now subscribe to our Economic Times WhatsApp channel In September 2023, seismic stations worldwide began picking up an unusual, rhythmic signal repeating every 90 seconds. This steady pulse continued for nine days and returned briefly a month later. It was faint, unlike a typical earthquake, but strong enough to register across continents—from Alaska to Australia. Scientists were baffled. No known earthquake, volcanic eruption, or explosion had caused source was traced to the remote Dickson Fjord in East Greenland, a narrow inlet bordered by towering cliffs. But what exactly had triggered this steady, global beat?The answer lay in a massive natural disaster: on 16 September 2023, more than 25 million cubic metres of rock and ice—a volume large enough to fill 10,000 Olympic swimming pools—collapsed from the mountainside into Dickson Fjord. This triggered a mega-tsunami with waves reaching 650 feet high, about half the height of the Empire State waves surged along the two-mile-long fjord, smashing against cliffs and bouncing back, creating a prolonged sloshing motion known as a seiche. Unlike tsunamis, which travel outward as single giant waves, seiches occur when water oscillates repeatedly in an enclosed space. This ongoing motion produced rhythmic seismic pulses detectable around the are caused by sudden, large displacements of water—usually due to earthquakes, landslides, or volcanic eruptions—and travel as single massive waves. Seiches, however, are standing waves formed in enclosed or semi-enclosed bodies of water, like lakes or fjords. They can be triggered by landslides or strong winds, causing the water to rock back and forth in a steady Dickson Fjord, the narrow, enclosed shape trapped the tsunami energy. The waves couldn't escape, so they kept bouncing, sending low-frequency seismic energy through the Earth's crust for mystery was unraveled thanks to the Surface Water and Ocean Topography (SWOT) satellite, a joint NASA and French space agency mission launched in December 2022. Unlike traditional satellites that scan narrow lines, SWOT uses Ka-band Radar Interferometer (KaRIn) technology to map wide swaths of ocean surface in high SWOT data, researchers observed subtle water elevation changes—slopes of up to two metres—sloshing across the fjord. These shifts matched the oscillations expected from fill gaps, scientists employed machine learning to simulate wave behaviour over time. They also analysed crustal deformation data from sensors thousands of kilometres away, plus weather and tidal records, ruling out other causes like researcher Thomas Monahan, a University of Oxford engineering student, said, 'Climate change is giving rise to new, unseen extremes. These changes are happening fastest in remote areas like the Arctic, where our ability to monitor them has historically been limited.'The underlying cause of the landslide was the rapid melting of Greenland's glaciers. As glacier ice shrinks, it removes the natural support holding mountainsides in place. This weakening triggers massive rock and ice explained, 'Climate change is shifting what is typical on Earth, and it can set unusual events into motion.' Past disasters, like a deadly tsunami in Karrat Fjord in 2017, show how these events can devastate local Fjord lies near popular cruise routes, raising concerns about future risks as Arctic tourism grows. Authorities are now exploring early-warning systems combining satellite data and real-time seismic monitoring to protect people in vulnerable event represents a turning point in how we observe and understand Earth's dynamic processes. Professor Thomas Adcock of Oxford said, 'This study is an example of how the next generation of satellite data can resolve phenomena that have remained a mystery in the past.'He added, 'We will be able to get new insights into ocean extremes such as tsunamis, storm surges, and freak waves. To fully harness these data, we need to innovate using both machine learning and ocean physics.'A Danish military vessel patrolled the fjord three days after the first pulse but observed nothing unusual. This shows how even massive natural events can leave little trace without sophisticated monitoring are now searching through historical seismic data for similar slow, rhythmic pulses. Carl Ebeling from UC San Diego said, 'This shows there is stuff out there that we still don't understand and haven't seen before.'Every new discovery will improve forecasts of how landslides, fjord shapes, and water depth interact. The hope is to provide early warnings that could save lives in remote, high-latitude silent, powerful waves in Greenland's fjord prove one thing: the most isolated places on Earth are changing fast—and we must listen carefully to what they tell us.


Time of India
2 hours ago
- Time of India
What's TOI-6894b that just showed up around a dwarf star only 2.5 times its size; here's why that's weird
Astronomers have made a discovery that challenges long-standing beliefs about how planets form. A gas giant planet , roughly the size of Saturn, has been found orbiting an unusually small red dwarf star . This rare pairing defies current models, which say small stars don't have enough material in their surrounding disks to form such large planets. Named TOI-6894b, the planet was found about 241 light-years from Earth in the constellation Leo. TOI-6894b is about 1.07 times the diameter of Saturn but has just over half its mass. This makes the planet very low in density, similar to that of a beach ball. Despite its large size, the planet orbits extremely close to its host star, completing a full revolution in just under three Earth days. Also Read: Sun will die in 5 billion years but life could survive on Jupiter's moon Europa; here's how by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Elegant New Scooters For Seniors In 2024: The Prices May Surprise You Mobility Scooter | Search Ads Learn More Undo The star it orbits, TOI-6894, is a red dwarf with only about 21% the mass of the Sun and roughly 250 times dimmer. In terms of physical size, the star is just 2.5 times wider than the planet itself, a remarkable size ratio rarely seen in planetary systems. Live Events Why This Is a Big Deal The formation of such a large planet around such a small star has puzzled astronomers. According to the well-accepted 'core accretion' model, large planets are thought to grow from small rocky cores that gradually gather gas from the star's surrounding protoplanetary disk. But small, dim stars like red dwarfs are believed to have disks too thin and short-lived to form massive planets before the gas disappears. Dr. Teruyuki Hirano, the lead researcher from the Graduate University for Advanced Studies in Japan, noted that this planetary system 'is completely inconsistent with what we thought we knew.' He said the discovery 'forces us to question our assumptions about planet formation .' Detected by TESS, Confirmed by Ground Telescopes The planet was first flagged by NASA 's Transiting Exoplanet Survey Satellite (TESS), which detects periodic dips in starlight caused by planets passing in front of their stars. Follow-up observations using the European Southern Observatory's Very Large Telescope (VLT) confirmed the planet's mass and orbit. Also Read: Rare superorganism 'wormnadoes' caught on camera for the first time; what is it exactly? More data will be needed to determine how TOI-6894b formed. Future observations by the James Webb Space Telescope could reveal more about its atmosphere and structure, including how much of it is made up of hydrogen and helium and whether it has a large core. Red dwarfs are the most common type of star in the Milky Way, making up about 75% of the stellar population. They're also seen as good candidates for hosting habitable planets due to their long lifespans. Discoveries like TOI-6894b suggest there's still much to learn about the diversity of planetary systems these stars may host. Though this is not the first time a massive planet has been found orbiting a small star, it is one of the most extreme examples yet.