logo
Signs Of Alien Life? New Study Finds Potential Biosignatures On Ocean World

Signs Of Alien Life? New Study Finds Potential Biosignatures On Ocean World

Yahoo2 days ago

Data from the James Webb Space Telescope on exoplanet K2-18b has revealed the "strongest hints yet of biological activity outside the solar system," according to a University of Cambridge study. Credit: Space.com | animations: ESA/Hubble, M. Kornmesser / NASA | edited by Steve Spaleta

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The Milky Way may not collide with neighboring galaxy Andromeda after all: 'From near-certainty to a coin flip'
The Milky Way may not collide with neighboring galaxy Andromeda after all: 'From near-certainty to a coin flip'

Yahoo

time18 hours ago

  • Yahoo

The Milky Way may not collide with neighboring galaxy Andromeda after all: 'From near-certainty to a coin flip'

When you buy through links on our articles, Future and its syndication partners may earn a commission. A titanic cosmic collision between the Milky Way and its closest large galactic neighbor, Andromeda, may not be as sure a thing as scientists thought. Previously, it had been proposed that there was a good chance that Andromeda and our galactic home, which are moving together, would meet in around 5 billion years and merge to form a daughter galaxy dubbed "Milkomeda." New research has revealed that there is a much smaller chance that these two spiral galaxies will slam into each other and merge over the next 10 billion years than was believed. In fact, it's about 50/50. "Our main finding is that the merger between the Milky Way and Andromeda, which had been predicted to occur in around 4.5 billion years, is actually much less certain. We found only about a 50% chance that this merger will happen during the next 10 billion years," team leader and University of Helsinki researcher Til Sawala told "In short, the probability went from near-certainty to a coin flip. "I was prepared to find something different, but yes, the fact that there is only around a 50/50 chance of a merger was very surprising." Sawala and colleagues reached this conclusion by simulating the next 10 billion years of the Milky Way's journey through the new simulation was based on updated astronomical data from the Hubble Space Telescope and from the European Space Agency (ESA) star tracking mission Gaia. The team also factored in new estimates of the masses of smaller dwarf galaxies around the Milky Way, which, via their gravitational influence, impact the cosmic passage of the Milky Way. "The main difference between our research and previous studies is that we benefited from newer and more precise data, and that we considered a more complete system, including the effect of the Large Magellanic Cloud, the Milky Way's largest satellite galaxy," Sawala said. The team was able to present different scenarios of what could become of the Milky Way and Andromeda galaxies as they gradually move together."A head-on collision is very unlikely, we found a less than 2% chance for that. In most of the cases that lead to a merger, the two galaxies will indeed fly past each other at first, which will lead to a loss of orbital energy, and subsequently to a merger," Sawala said. "How close they come on their first passage is very uncertain, however, and if they don't come very close, meaning if their distance is more than around 500,000 light-years, they might not merge at all." The researchers found that if the orbits of the Milky Way and Andromeda come close enough for the two galaxies to gravitationally influence each other, then a merger is an eventuality. "But it's almost equally likely that they stay well separated, in which case they won't merge, and also continue to evolve mostly in isolation," The team found that while the odds of a merger with Andromeda drop when the Large Magellanic Cloud's influence is considered, with this adjustment, the Milky Way becomes more likely to cannibalize this satellite dwarf to this research, our galaxy is almost certain to merge with the Large Magellanic Cloud over the next 2 billion years. Related Stories: — Why do dwarf galaxies line up? 'Zippers' and 'twisters' in the early universe may solve a galactic mystery — Scientists calculate when the universe will end — it's sooner than expected — Amateur astrophotographer captures a stunning galaxy 24 million light-years from Earth (photo) "Of course, now we really want to find out whether the Milky Way and Andromeda will collide or not," Sawala said. "That will not only need more observational data, but also more complete modelling of their interaction, as well as of the effect of the environment in which they evolve. "Luckily, there will be more observational data coming very soon, next year, from the Gaia Space Telescope, and perhaps also from the Hubble Space Telescope." The team's research was published on Monday (June 2) in the journal Nature Astronomy.

There's a 50/50 Chance the Milky Way and Andromeda Galaxy Will Merge
There's a 50/50 Chance the Milky Way and Andromeda Galaxy Will Merge

Yahoo

time18 hours ago

  • Yahoo

There's a 50/50 Chance the Milky Way and Andromeda Galaxy Will Merge

The universe might not meet its end for another quinvigintillion years, but our galaxy's fate teeters on a far less certain line. New research shows that there's a 50% chance that the Milky Way and its nearest major galactic neighbor, the Andromeda Galaxy, will converge within the next 10 billion years. Previous analyses have made out the convergence to be a sure-fire thing, but it turns out that one dwarf galaxy is recalibrating the scales. Though about 2.5 million light-years currently lie between the Milky Way and Andromeda, the two galaxies are creeping closer to each other. In 1913, astronomer Vesto Melvin Slipher noticed via Arizona's Lowell Observatory that Andromeda (then known as the Andromeda Nebula) was approaching the Milky Way at 186 miles per second. Since then, researchers have not only verified Slipher's math but also found via multiple simulations that Andromeda will someday combine with the Milky Way. One paper from 2021 even proposes that the two galaxies will meet 4.3 billion years from now, with a complete merger taking another 6 billion years after that. But these simulations failed to account for one small yet mighty factor: the Large Magellanic Cloud. Roughly 160,000 light-years from our Milky Way, this dwarf galaxy has long been considered an insignificant part of the so-called Local Group. But in 2015, the beginning of the Survey of the MAgellanic Stellar History, or SMASH, found that the Large Magellanic Cloud was larger and more complex than initially thought. Astronomers have spent the years since sifting through SMASH data for dwarf galaxy secrets. Illustration of a hypothetical merger between the Milky Way and Andromeda Galaxy. Credit: NASA, ESA, STScI, DSS, Till Sawala (University of Helsinki); Image Processing: Joseph DePasquale (STScI) It's for this reason that the latest Milky Way-Andromeda merger simulation actually includes the Large Magellanic Cloud. To cover for every possible uncertainty, an international team of astronomers ran their simulation nearly 100,000 times and found that just under 50% of the time, the Milky Way and Andromeda collided and merged. Alternately dropping different nearby galaxies showed that Messier 33 (the third largest galaxy in the Local Group) made a merger more likely, while the Large Magellanic Cloud reduced the odds of a convergence. That's because the Large Magellanic Cloud pulls the Milky Way out of Andromeda's path, as a comic book hero would pull a civilian off some train tracks. The Large Magellanic Cloud might only get to bask in its glory for a few hundred million years, however. The researchers' simulation showed that the Milky Way will almost certainly collide with the Large Magellanic Cloud in 2 billion years, disappearing the latter galaxy. As observatories gather more data about the universe—and scientists' models inevitably become more advanced—we'll find out whether the Large Magellanic Cloud really will swoop in to save the day. Of course, we won't see the benefit either way. But it will be nice to know whether our galactic home will continue to exist after we're gone.

The Milky Way was on a collision course with a neighboring galaxy. Not anymore
The Milky Way was on a collision course with a neighboring galaxy. Not anymore

Yahoo

timea day ago

  • Yahoo

The Milky Way was on a collision course with a neighboring galaxy. Not anymore

More than a decade ago, scientists predicted our Milky Way galaxy and neighboring Andromeda would collide in four billion years, resulting in a 'makeover' of our solar system. Now, that is unlikely — at least within the expected timeframe. 'We see external galaxies often colliding and merging with other galaxies, sometimes producing the equivalent of cosmic fireworks when gas, driven to the center of the merger remnant, feeds a central black hole emitting an enormous amount of radiation, before irrevocably falling into the hole,' explained Durham University Professor Carlos Frenk. 'Until now we thought this was the fate that awaited our Milky Way galaxy,' he said in a statement. 'We now know that there is a very good chance that we may avoid that scary destiny.' Previous research from NASA astronomers had found that the collision with our closest neighbor galaxy would fling the sun to a new region of space, although the Earth would not be destroyed. The stars would be sent into different orbits. Right now, the galaxies are heading toward each other with a speed of approximately 62 miles per second. But, following 100,000 simulations of both galaxies based on the latest observational data from NASA's Hubble and the European Space Agency's Gaia space telescopes, the authors of the study that was published in the journal Nature Astronomy found just a 2 percent probability that the Milky Way and Andromeda would crash into each other over the course of the next five billion years. In more than half of the scenarios, the galaxies experienced at least one close encounter before they lost enough orbital energy to collide and merge. However, that would occur in some eight-to-10 billion years. By that time, the sun may have burnt itself out when it runs out of hydrogen, consuming the Earth. But, in most other cases, the galaxies pass each other by without incident, although there is room for uncertainty. Furthermore, the authors assert that previous research was not incorrect, but that they were able to incorporate more variables in their simulations. 'While some earlier works had focused on the interaction between the Milky Way, Andromeda, and the Triangulum galaxy, we also include the effect of the Large Magellanic Cloud,' lead author Dr. Till Sawala, of the University of Helsinki, said. The cloud is a dwarf galaxy that orbits the Milky Way. 'Although its mass is only around 15 percent of the Milky Way's, its gravitational pull directed perpendicular to the orbit with Andromeda perturbs the Milky Way's motion enough to significantly reduce the chance of a merger with the Andromeda galaxy.' However, the authors are already looking to update their findings with new data. The European Space Agency's Gaia space telescope will soon provide more precise measurements of crucial factors within the galaxies, including the motion of Andromeda. Still, Frenk said the results are a 'testimony' to the power of large supercomputers. 'When I see the results of our calculations, I am astonished that we are able to simulate with such precision the evolution of gigantic collections of stars over billions of years and figure out their ultimate fate,' he added.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store