logo
Earth's atmosphere hasn't had this much CO2 in millions of years

Earth's atmosphere hasn't had this much CO2 in millions of years

Yahoo2 days ago

Earth's atmosphere now has more carbon dioxide in it than it has in millions — and possibly tens of millions — of years, according to data released Thursday by the National Oceanic and Atmospheric Administration and scientists at the University of California San Diego.
For the first time, global average concentrations of carbon dioxide, a greenhouse gas emitted as a byproduct of burning fossil fuels, exceeded 430 parts per million (ppm) in May. The new readings were a record high and represented an increase of more than 3 ppm over last year.
The measurements indicate that countries are not doing enough to limit greenhouse gas emissions and reverse the steady buildup of C02, which climate scientists point to as the main culprit for global warming.
'Another year, another record,' Ralph Keeling, a professor of climate sciences, marine chemistry and geochemistry at UC San Diego's Scripps Institution of Oceanography, said in a statement. 'It's sad.'
Carbon dioxide, like other greenhouse gases, traps heat from the sun and can remain in the atmosphere for centuries. As such, high concentrations of greenhouse gases in the atmosphere contribute to higher global temperatures and other negative consequences of climate change, including rising sea levels, melting polar ice, and more frequent and severe extreme weather events.
Atmospheric carbon dioxide has risen sharply since preindustrial times, owing mostly to human activities that pump greenhouse gases into the air.
Decades ago, crossing the 400 ppm threshold was unthinkable. That meant that for every 1 million molecules of gas in the atmosphere, more than 400 were carbon dioxide. The planet hit that grim milestone in 2013. And now, scientists have warned that levels of CO2 could reach 500 ppm within 30 years.
But human society is already in uncharted territory.
The last time the planet had such high levels of carbon dioxide in the atmosphere was likely more than 30 million years ago, Keeling said, long before humans roamed Earth and during a time when the climate was vastly different.
He said it's alarming not only how high CO2 levels have climbed, but also how quickly.
'It's changing so fast,' he told NBC News. 'If humans had evolved in such a high-CO2 world, there would probably be places where we wouldn't be living now. We probably could have adapted to such a world, but we built our society and a civilization around yesterday's climate.'
Carbon dioxide levels are typically represented on a graph known as the Keeling Curve, named for Keeling's father, Charles David Keeling, who began taking daily measurements of atmospheric carbon dioxide in 1958 with instruments atop the Mauna Loa Observatory in Hawaii.
The Keeling Curve famously shows a steep climb since the Industrial Revolution, owing to human-caused climate change.
Ralph Keeling and his colleagues at the Scripps Institution of Oceanography found that average concentrations of atmospheric CO2 in May were 430.2 ppm. NOAA's Global Monitoring Laboratory, which has conducted separate daily readings since 1974, reported an average of 430.5 ppm in May.
Carbon dioxide levels in the atmosphere are closely monitored to gauge how much humans are influencing Earth's climate. The readings are also an indicator of the planet's overall health.
'They're telling you about your whole system health with a single-point measurement,' Keeling said. 'We're getting a holistic measurement of the atmosphere from really a kind of simple set of measurements.'
This article was originally published on NBCNews.com

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

15 of the Most Important Inventions of All Time According to AI
15 of the Most Important Inventions of All Time According to AI

Time​ Magazine

time8 hours ago

  • Time​ Magazine

15 of the Most Important Inventions of All Time According to AI

This article is published by a partner of TIME. Inventions are the building blocks of civilization, shaping everything from our daily routines to the entire global economy. From the first stone tools created by our ancestors to the cutting-edge technologies driving innovation today, human creativity has consistently led to breakthroughs that improve lives and change the course of history. Some inventions have dramatically altered entire industries, while others have redefined our interaction with the world around us, pushing the boundaries of what's possible. The following list highlights 15 of the most important inventions of all time, selected for their far-reaching impact and transformative influence on society. These inventions have laid the foundation for modern life, from medicine and communication to transportation and energy. With the research assistance of AI, we will explore how these breakthroughs have shaped the world and continue to do so today. Here are the 15 inventions that stand out as some of the most influential throughout history. Breakthrough Inventions 1. The Wheel (3500 BC) The wheel is one of the oldest and most important inventions, dating back to around 3500 BC. Originally used for pottery, it soon found application in transportation, revolutionizing human mobility. The ability to transport goods and people over long distances led to the growth of trade and connected far-flung cultures. The wheel also became a critical component in machinery, laying the foundation for the Industrial Revolution and modern engineering. Additional Insights: Engineering Impact: It has been used in countless machines and continues to be foundational in modern engineering. Transportation: The wheel made it possible to move goods and people quickly and efficiently, boosting trade. Symbol of Innovation: It's often seen as a symbol of human ingenuity and problem-solving. Global Adoption: Its utility spread across the world, influencing various civilizations and industries. 2. The Printing Press (1440) Johannes Gutenberg's invention of the printing press in 1440 dramatically changed the dissemination of information. By making it possible to mass-produce books, pamphlets, and newspapers, it allowed knowledge to be distributed widely and inexpensively. This invention played a crucial role in the Renaissance, Reformation, and the spread of scientific ideas. The printing press was key to the democratization of knowledge and laid the foundation for modern education and the information age. Additional Insights: Knowledge Distribution: Books became affordable, allowing information to reach a much wider audience. Cultural Shift: The press helped spread ideas that challenged religious and political norms, such as during the Reformation. Scientific Advancements: It enabled the rapid dissemination of new scientific discoveries, propelling the Scientific Revolution. Global Impact: Its influence extended across Europe and beyond, shaping societies worldwide. Enduring Legacy: Paved the way for the modern information society. 3. The Atomic Bomb (1945) Developed during World War II, the atomic bomb was a revolutionary and highly controversial invention. Its creation led to the first use of nuclear weapons in warfare, resulting in the bombings of Hiroshima and Nagasaki in 1945. While its destructive power reshaped global politics and military strategy, it also sparked the nuclear arms race and significant shifts in geopolitical relations during the Cold War. The atomic bomb's legacy continues to influence the field of international relations and nuclear disarmament. Additional Insights: World War II Impact: It helped bring the war to a close but raised ethical questions about the use of such destructive weapons. Nuclear Arms Race: Initiated the Cold War competition between the United States and the Soviet Union. Geopolitical Shifts: Nuclear weapons fundamentally altered military strategies and global diplomacy. Nuclear Energy: The underlying technology contributed to the development of nuclear energy for peaceful purposes. Moral Dilemmas: Sparked global debates about the morality and necessity of nuclear weapons in warfare. 4. Electricity (18th–19th Centuries) Electricity powers nearly all modern technology, from lighting in homes to methods of communication, transportation, and industry. Discovered and refined throughout the 18th and 19th centuries, it paved the way for countless innovations, including the telegraph, electric motors, and telecommunications. Its widespread adoption during the Industrial Revolution allowed factories to run more efficiently, transforming economies and improving quality of life. Today, electricity remains essential in almost every aspect of daily life. Additional Insights: Early Discoveries: Benjamin Franklin, Michael Faraday, and Thomas Edison made key contributions. Industrial Impact: Powered the growth of various manufacturing sectors and mass transportation. Technological Advancements: Enabled telegraphy, radio, television, and eventually the computer and internet. Global Accessibility: Powers homes and businesses worldwide, essential for modern living. Sustainability Challenges: The quest for renewable energy sources remains central to the future of electricity generation. 5. The Telephone (1876) Invented by Alexander Graham Bell in 1876, the telephone allowed for instant communication over long distances, revolutionizing how people connect. Before the telephone, communication was limited to written letters or telegrams, which could take days to deliver. The invention enabled real-time conversations and opened up new possibilities for business, government, and personal connections. Today, the telephone has evolved into the smartphone, which plays a central role in daily life. Additional Insights: First Words: Bell's first successful telephone call was 'Mr. Watson, come here, I want to see you.' Global Connectivity: Made distant communication fast and efficient, fostering a new era of interconnectedness. Business Revolution: Allowed organizations to operate more effectively and make decisions quickly. Modern Evolution: The landline phone transformed into mobile phones and smartphones. Telecommunications Industry: Gave rise to a vast global industry dedicated to communication technologies. 6. Penicillin (1928) Penicillin, discovered by Alexander Fleming in 1928, was the first antibiotic and revolutionized medicine. It allowed doctors to treat previously fatal bacterial infections, drastically reducing mortality rates and ushering in the era of modern antibiotics. This breakthrough saved millions of lives and paved the way for other lifesaving antibiotics. Today, penicillin remains a cornerstone of medical treatments, although challenges such as antibiotic resistance have emerged. Additional Insights: Life-Saving Discovery: Dramatically reduced deaths from infections once considered fatal. Medical Impact: Initiated the antibiotic era, radically changing the treatment of infectious diseases. Global Health: Its use is widespread, reaching patients worldwide. Antibiotic Resistance: Overuse has led to resistant strains of bacteria, a growing global concern. Ongoing Research: Scientists continue to develop new antibiotics to combat evolving pathogens. 7. The Airplane (1903) The invention of the airplane by the Wright brothers in 1903 forever changed human travel. For the first time, flight over long distances became possible, shrinking the world and enabling global commerce and tourism. Airplanes transformed industries like international business and leisure travel, making transit faster and more accessible. Today, air travel is one of the most essential forms of long-distance transportation. Additional Insights: First Flight: The Wright brothers' initial flight lasted just 12 seconds, ushering in the aviation age. Global Connectivity: Made cross-continental and intercontinental travel feasible in mere hours. Economic Impact: Aviation is vital for modern commerce, connecting businesses and services worldwide. Technological Advances: Fuel-efficient planes and improved safety measures continue evolving. Future Developments: Electric and autonomous flying vehicles may soon redefine air travel again. 8. The Computer (1940s) The invention of the computer has had a profound impact on almost every aspect of human life. Early computers in the 1940s were large machines used primarily for military and scientific calculations. With the advent of personal computers in the 1970s and 1980s, computing power became accessible to the masses, driving the digital revolution. Computers are now central to business, education, communication, and entertainment, and they continue to evolve through innovations in artificial intelligence, big data, and cloud computing. Additional Insights: Early Models: The first computers occupied entire rooms and performed complex calculations. Personal Computing: The rise of home and office computers democratized access to technology. Global Connectivity: Computers power the internet, enabling global communication and collaboration. Technological Growth: Laptops, smartphones, and tablets have integrated computing into daily life. AI and Beyond: Modern computers support advanced technologies like machine learning. 9. Email (1970s) Email transformed communication by enabling people to send and receive messages instantly across long distances. Developed in the early 1970s, it quickly replaced traditional mail and telegrams for many uses, offering a faster and more efficient medium. Email is indispensable in personal and professional contexts, allowing real-time communication and easy document sharing. Despite the rise of social media and instant messaging, email remains one of the most widely used communication tools today. Additional Insights: Business Efficiency: Streamlined workplace communication, reducing the need for physical memos and meetings. Global Reach: Made it possible to communicate instantly with anyone anywhere in the world. Security Considerations: Phishing attacks and spam are modern challenges in email usage. Email Evolution: Integration with calendars, task managers, and file-sharing solutions is commonplace. 10. Television (1930s) Television fundamentally altered how information and entertainment are consumed. By the 1930s, it had become a popular medium for delivering news, shows, and educational content. TV shaped global culture and opinion, serving as a powerful platform for political discourse, advertising, and mass communication. The medium continues to evolve with the rise of streaming services and on-demand viewing, offering audiences a wealth of content anytime, anywhere. Additional Insights: Broadcasting: Revolutionized mass communication by reaching large audiences at once. Cultural Impact: Influenced everything from music to politics on a global scale. Technological Innovation: Shift to digital and high-definition improved quality and accessibility. Global Connectivity: Networks and streaming platforms bring international events to viewers worldwide. Future of TV: On-demand and interactive features are redefining the viewing experience. 11. The Refrigerator (1834) The refrigerator changed how people preserved and stored food, improving public health by preventing spoilage and reducing foodborne illnesses. Before refrigeration, methods like salting and drying were common but inefficient. By enabling long-term storage, the refrigerator revolutionized the food industry, making mass production and distribution of perishable goods possible. It's now a kitchen staple worldwide. Additional Insights: Food Safety: Maintains safe temperatures to prevent bacterial growth. Energy Efficiency: Modern designs focus on reducing electricity consumption. Environmental Impact: Early models used harmful chemicals; newer units use more eco-friendly refrigerants. Global Distribution: Essential for international trade in perishable items. Smart Technology: Some modern refrigerators come with connectivity features for better inventory management. 12. The Light Bulb (1879) Invented by Thomas Edison in 1879, the practical light bulb changed how people lived by providing a reliable source of artificial light. It extended productive hours beyond daylight, boosted nighttime safety, and influenced the layout of modern cities. The light bulb also led to the establishment of electrical grids powering homes and businesses. Contemporary designs like LEDs have made lighting more energy-efficient and environmentally friendly. Additional Insights: Early Developments: Edison and other inventors like Joseph Swan made key breakthroughs. Cultural Impact: Allowed activities to continue past sunset and enhanced public safety. Energy Efficiency: LEDs and CFLs are reducing global energy usage. Worldwide Adoption: Became a universal standard in households and commercial spaces. Environmental Impact: Ongoing push for sustainable lighting to cut electricity consumption. 13. The Automobile (1885) Invented by Karl Benz in 1885, the automobile revolutionized transportation, allowing personal mobility on an unprecedented scale. People could travel long distances rapidly, reshaping urban design and fueling suburban growth. The global adoption of cars propelled trade and commerce, but also led to environmental concerns tied to fossil fuel consumption. Innovations like electric and hybrid vehicles continue to shape the industry's future. Additional Insights: Assembly Line: Henry Ford's production methods made cars affordable for the masses. Economic Growth: The auto industry is a massive global employer and economic driver. Environmental Challenges: Emissions drive the push toward electric and alternative-fuel vehicles. Suburbanization: Cars enabled the rise of suburbs and changed city infrastructures. Future Innovations: Autonomous vehicles promise another revolution in transportation. 14. The Radio (1890s) Radio transformed communication by transmitting sound over long distances through electromagnetic waves. First demonstrated in the 1890s by innovators like Guglielmo Marconi and Nikola Tesla, it became wildly popular in the early 20th century for news, music, and entertainment. Radio gave rise to shared cultural experiences and played an influential role in shaping public opinion, especially during significant historical events. Additional Insights: First Broadcast: Marconi's successful transmission in 1901 was a landmark in wireless communication. Cultural Influence: Radio dramas, music, and news broadcasts became staples of daily life. Global Reach: Served as a vital communication method for people in remote areas. Evolution of Radio: FM radio and digital broadcasting expanded the medium's range and quality. Media Convergence: Online streaming and podcasts continue to adapt radio for the digital era. 15. The Camera (Early 19th Century) The invention of the camera revolutionized how we capture memories, document events, and record history. Joseph Nicéphore Niépce took the first permanent photograph in 1826, and camera technology has evolved continuously since then—from bulky film cameras to compact digital devices. Photography has greatly impacted art, journalism, and personal expression, enabling people to preserve and share moments in real time. Additional Insights: First Photograph: Taken by Niépce in 1826, marking the birth of modern photography. Cultural Impact: Influenced visual art, media, and public perception. Technological Progress: Digital cameras and smartphone integration have made photography ubiquitous. Social Media: Photos are at the heart of social platforms, fostering global visual storytelling. Historical Documentation: Cameras have captured landmark events, shaping our collective memory. Conclusion on Key Inventions These 15 inventions have fundamentally shaped human civilization, influencing everything from how we communicate and travel to how we work and live. Each marks a leap forward in human ingenuity that addressed critical needs and created opportunities for continued progress. Their impact reverberates in modern industries, improving the quality of life for countless people around the world. As we look to the future, these foundational innovations serve as a springboard for even more groundbreaking developments. The spirit of creativity and the relentless drive to overcome global challenges will fuel progress, bringing about new inventions that will once again transform the world in ways we can only imagine. Related Articles: About the Authors: Richard D. Harroch is a Senior Advisor to CEOs, management teams, and Boards of Directors. He is an expert on M&A, venture capital, startups, and business contracts. He was the Managing Director and Global Head of M&A at VantagePoint Capital Partners, a venture capital fund in the San Francisco area. His focus is on internet, digital media, AI and technology companies. He was the founder of several Internet companies. His articles have appeared online in Forbes, Fortune, MSN, Yahoo, Fox Business and Richard is the author of several books on startups and entrepreneurship as well as the co-author of Poker for Dummies and a Wall Street Journal-bestselling book on small business. He is the co-author of a 1,500-page book published by Bloomberg on mergers and acquisitions of privately held companies. He was also a corporate and M&A partner at the international law firm of Orrick, Herrington & Sutcliffe. He has been involved in over 200 M&A transactions and 250 startup financings. He can be reached through LinkedIn. Dominique Harroch is the Chief of Staff at She has acted as a Chief of Staff or Operations Leader for multiple companies where she leveraged her extensive experience in operations management, strategic planning, and team leadership to drive organizational success. With a background that spans over two decades in operations leadership, event planning at her own start-up and marketing at various financial and retail companies, Dominique is known for her ability to optimize processes, manage complex projects and lead high-performing teams. She holds a BA in English and Psychology from U.C. Berkeley and an MBA from the University of San Francisco. She can be reached via LinkedIn.

Atmospheric carbon dioxide levels break seasonal records: NOAA
Atmospheric carbon dioxide levels break seasonal records: NOAA

Yahoo

timea day ago

  • Yahoo

Atmospheric carbon dioxide levels break seasonal records: NOAA

Atmospheric concentrations of carbon dioxide made history last month by climbing to their highest seasonal peak available in historical records, a team of researchers reported. For the first time ever, these levels surpassed 430 parts per million (ppm) at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory in Hawaii, which is considered the global benchmark site for tracking atmospheric carbon dioxide. The 430.2 ppm calculation for May marked a 3.5 ppm increase over May 2024's reading of 426.7 ppm, according to scientists from the Scripps Institution of Oceanography at the the University of California, San Diego, who worked together with colleagues at NOAA. 'Another year, another record,' Ralph Keeling, director of the Scripps CO2 Program, said in a statement. 'It's sad.' At an elevation of 11,141 feet above sea level, the observatory is located on the slopes of the Mauna Loa volcano and produces measurements that reflect the average state of the atmosphere for the Northern Hemisphere. Carbon dioxide, the scientists explained, acts like a blanket — trapping heat and warming the lower atmosphere, as well as altering weather patterns and fueling extreme weather events. The surge in CO2 concentrations is also contributing to acidification and causing changes in ocean chemistry that affect the survival of marine organisms, according to the researchers. A half-century of sampling at Mauna Loa, conducted by researchers at both NOAA and Scripps, have provided a baseline for tracking the increase of human-generated carbon emissions, the scientists noted. They acknowledged, however, that the station does not capture the full extent as to how carbon CO2 concentrations can vary across the planet — as stations in the Southern Hemisphere have yet to cross the 430-ppm threshold. NOAA's global sampling network, as well as 14 worldwide stations operated by the Scripps CO2 program, are also contributing to the broader planetary picture and helping identify locations of carbon sources and sinks, the researchers added. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.

Atmospheric carbon dioxide levels break seasonal records: NOAA
Atmospheric carbon dioxide levels break seasonal records: NOAA

The Hill

timea day ago

  • The Hill

Atmospheric carbon dioxide levels break seasonal records: NOAA

Atmospheric concentrations of carbon dioxide made history last month by climbing to their highest seasonal peak available in historical records, a team of researchers reported. For the first time ever, these levels surpassed 430 parts per million (ppm) at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory in Hawaii, which is considered the global benchmark site for tracking atmospheric carbon dioxide. The 430.2 ppm calculation for May 2025 marked a 3.5 ppm increase over the previous May's reading of 426.7 ppm, according to scientists from the University of California San Diego's Scripps Institution of Oceanography, who worked together with colleagues at NOAA. 'Another year, another record,' Ralph Keeling, director of the Scripps CO2 Program, said in a statement. 'It's sad.' At an elevation of 11,141 feet above sea level, the observatory is located on the slopes of the Mauna Loa volcano and produces measurements that reflect the average state of the atmosphere for the northern hemisphere. Carbon dioxide, the scientists explained, acts like a blanket — trapping heat and warming the lower atmosphere, as well as altering weather patterns and fueling extreme weather events. The surge in CO2 concentrations is also contributing to acidification and causing changes in ocean chemistry that affect the survival of marine organisms, according to the researchers. A half-century of sampling at Mauna Loa, conducted by researchers at both NOAA and Scripps, have provided a baseline for tracking the increase of human-generated carbon emissions, the scientists noted. They acknowledged, however, that the station does not capture the full extent as to how carbon CO2 concentrations can vary across the planet — as stations in the Southern Hemisphere have yet to cross the 430-ppm threshold. NOAA's global sampling network, as well as 14 worldwide stations operated by the Scripps CO2 program, are also contributing to the broader planetary picture and helping identify locations of carbon sources and sinks, the researchers added.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store