‘Vacation-style' beaches may have existed on ancient Mars
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.
Mars may have once hosted an ocean with waves that lapped against sandy beaches 3.6 billion years ago, according to new research. China's Zhurong rover and its ground-penetrating radar detected the ancient shorelines when it operated from May 2021 to May 2022.
The rover landed in Utopia Planitia, a plain within the largest known impact basin on Mars, near a series of ridges in the planet's northern hemisphere. Scientists have long questioned whether the ridges might represent the remnants of a shoreline, so Zhurong set out in search of evidence of ancient water.
The study, based on data collected by Zhurong as its radar instrument peered beneath the surface to examine hidden rock layers, was published Monday in the journal Proceedings of the National Academy of Sciences.
'We're finding places on Mars that used to look like ancient beaches and ancient river deltas,' said study coauthor Benjamin Cardenas, assistant professor of geology in the department of geosciences at Penn State, in a statement. 'We found evidence for wind, waves, no shortage of sand — a proper, vacation-style beach.'
What's more, it's possible the Martian environment was warmer and wetter for tens of millions of years longer than previously suspected, the study authors wrote.
The revelations add to the increasing evidence that the red planet once had a warmer, wetter climate as well as an ocean that covered one-third of the Martian surface — conditions that might have created a hospitable environment for life.
In the 1970s, NASA's Mariner 9 and Viking 2 were the first missions to spy features that suggested the presence of an ancient ocean on Mars.
Utopia Planitia dates to the Hesperian Period, or 3.7 billion to 3 billion years ago, and it lacks abundant evidence for standing water, unlike more ancient regions of Mars, said Aaron Cavosie, a planetary scientist and senior lecturer at the Space Science and Technology Centre at Curtin University in Perth, Australia. Cavosie was not involved in the new study.
'The Mariner 9 orbiter first imaged giant canyons on Hesperian surfaces of Mars in the 1970s, but they are generally viewed as representing catastrophic bursts of groundwater to the surface, rather than evidence for standing water,' Cavosie said. 'The idea is that Mars' climate cooled down by this time and the surface dried up.'
Multiple spacecraft have captured observations that suggest much of Mars' water escaped to space as the planet's atmosphere disappeared — astronomers are still investigating what caused this dramatic transformation. As the planet cooled, some of the water likely moved underground in the form of ice or combined with rocks to create minerals.
Viking's images showcased what appeared to be a shoreline in the northern hemisphere. But in stark contrast to the level shorelines on Earth, the Martian feature was jaggedly irregular, with height differences of up to 6.2 miles (10 kilometers).
Study coauthor Michael Manga, a professor of Earth and planetary science at the University of California, Berkeley, and his colleagues previously suggested that volcanic activity in the region, as well as a change in Mars' rotation, altered the shoreline and caused it to be uneven over time.
'Because the spin axis of Mars has changed, the shape of Mars has changed. And so what used to be flat is no longer flat,' Manga said.
But what scientists needed most to answer their questions were observations made from 'boots on the ground,' or in this case, rover tracks, Cavosie said. Zhurong would be able to see whether the rock layers buried in Utopia Planitia were volcanic or if they contained sediments consistent with those of an ocean.
When Zhurong landed, it traveled along Utopia Planitia's ridges, collecting data up to 260 feet (80 meters) beneath the surface with radar.
Between 32.8 and 114.8 feet (10 and 35 meters) down, the rover's radar detected sedimentary structures similar to layered beaches on Earth that dipped at a 14.5-degree angle. The radar also measured the size of the particles, which matched that of sand grains.
'The structures don't look like sand dunes,' Manga said. 'They don't look like an impact crater. They don't look like lava flows. That's when we started thinking about oceans. The orientation of these features (is) parallel to what the old shoreline would have been.'
The structures strongly resembled coastal sediment deposits on Earth, such as those found in the Bay of Bengal, formed by the presence of a long-term stable ocean, the study authors said.
The team said it believes the rover found 'foreshore deposits,' which take millions of years to form as sediments carried by tides and waves slope downward toward an ocean.
'This stood out to us immediately because it suggests there were waves, which means there was a dynamic interface of air and water,' Cardenas said. 'When we look back at where the earliest life on Earth developed, it was in the interaction between oceans and land, so this is painting a picture of ancient habitable environments, capable of harboring conditions friendly toward microbial life.'
Rivers likely helped dump sediment into the oceans, which was then distributed by waves to create beaches. Sedimentary rocks, carved channels and even the remains of an ancient river delta, studied by NASA's Perseverance rover, have shown how water once shaped the Martian landscape.
After the ocean dried up, the beaches were likely blanketed by volcanic eruptions and material from dust storms, effectively preserving the shoreline, Cardenas said.
'It's always a challenge to know how the last 3.5 billion years of erosion on Mars might have altered or completely erased evidence of an ocean,' he said. 'But not with these deposits. This is a very unique dataset.'
Now, the team wants to determine the height of the waves and tides within the ocean, how long the ocean persisted, and whether it provided a potentially hospitable environment, Magna said.
François Forget, senior research scientist and research director at the French National Centre for Scientific Research, said he isn't entirely convinced by the hypothesis presented in the study that only ocean shorelines can explain the radar data. Forget was not involved in the new research.
'I do not think that we can be certain that the observations could not be explained by dune processes,' or the formation of sand dunes, which Forget said he believes to be more likely on Mars.
Meanwhile, Dr. Joe McNeil, a planetary scientist and postdoctoral researcher at London's Natural History Museum, believes the findings add weight to the hypothesis of an ancient northern ocean on Mars by providing crucial subsurface evidence. McNeil was not involved in the new study.
'If these coastal deposits truly represent deposition of sediments at the edge of an ancient ocean, it suggests a prolonged period of stable liquid water, which has major implications for Mars' climate history,' McNeil said. 'It would mean Mars had conditions that could have supported a hydrological system with potential habitable environments for substantial amounts of time.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
4 hours ago
- Yahoo
Long, dark 'streaks' spotted on Mars aren't what scientists thought
When you buy through links on our articles, Future and its syndication partners may earn a commission. Mysterious dark streaks flowing across Mars's surface may not be the result of running water after all, a new artificial intelligence (AI) analysis suggests. The streaks, first observed running along Mars's cliffsides and crater walls by NASA's Viking mission in 1976, were long thought by scientists to have formed as a result of the flow of ancient water across the now mostly desiccated planet's surface. But an AI algorithm trained on slope streak observations has revealed a different origin for the streaks — likely being formed from wind and dust, not water. The findings, published May 19 in the journal Nature Communications, could have important implications for where humans choose to explore Mars, and the places they search for evidence of possible ancient life. "That's the advantage of this big data approach," study co-author Adomas Valantinas, a planetary scientist at Brown University, said in a statement. "It helps us to rule out some hypotheses from orbit before we send spacecraft to explore." The sinewy lines are darker than the surrounding Martian ground and extend for hundreds of meters downhill. The shorter-lived of these features are called recurring slope lineae (RSL), and regularly spring up during Mars's warmer spells. This led some planetary scientists to suggest that seasonal temperature fluctuations could be causing ice or frozen aquifers to melt, or humid air to condense, sending streams of salty water trickling down the planet's craters. If this were true, it would make these regions of particular interest to future Mars missions. Related: Curiosity rover finds largest carbon chains on Mars from 3.7 billion-year-old rock To investigate this, the scientists behind the study trained a machine learning algorithm on confirmed streak sightings before making it scan through 86,000 satellite images to create a map of 500,000 streak features. RELATED STORIES —NASA may have unknowingly found and killed alien life on Mars 50 years ago, scientist claims —'Building blocks of life' discovered on Mars in 10 different rock samples —Just 22 people are needed to colonize Mars — as long as they are the right personality type, study claims "Once we had this global map, we could compare it to databases and catalogs of other things like temperature, wind speed, hydration, rock slide activity and other factors." Bickel said. "Then we could look for correlations over hundreds of thousands of cases to better understand the conditions under which these features form." Using the map, the scientists found the streaks were most likely to form in places where wind speed and dust deposition was high, suggesting that they came from layers of fine dust sliding off steep slopes. Other studies have pointed to tantalizing evidence of water and even life on Mars. If the study findings hold up, they could serve as a guide to sift between the Red Planet's useful leads and its red herrings.


Boston Globe
16 hours ago
- Boston Globe
What is Fusarium graminearum, the fungus US authorities say was smuggled in from China?
Advertisement Toxic plant pathogens that a Chinese scientist entered the US last year stashed in his backpack. Uncredited/Associated Press What is Fusarium head blight? Fusarium graminearum causes a disease called Fusarium head blight that can wipe out cereal crops such as wheat, barley and maize and rice — it inflicts $1 billion in losses annually on U.S. wheat and barley crops, according to the U.S. Department of Agriculture. Get Starting Point A guide through the most important stories of the morning, delivered Monday through Friday. Enter Email Sign Up It isn't the only fungus to cause Fusarium head blight, but it's the most common culprit in the U.S. The fungus infects plants early in the growing season, shriveling wheat grains and blanching crop heads a whitish-tan color. It also causes a toxin to accumulate in wheat kernels that can make them unsafe for people and livestock to eat. Nicknamed 'vomitoxin' because it's most known for causing livestock to throw up, it can also cause diarrhea, abdominal pain, headache and fever in animals and people. Advertisement Wheat and other grain crops are screened for various toxins, including Fusarium graminearum, before they can be used to feed animals and humans. Farmers have to throw out any infected grains, which can cause devastating losses. 'It's one of the many problems that farmers have to deal with that risks their livelihood,' said David Geiser, a Fusarium expert at Penn State. A colonization of Fusarium head blight, a costly fungal disease, growing on field-grown hemp in Kentucky on Sept. 29, 2020. Uncredited/Associated Press What are the accusations? Although Jian and Liu are accused of smuggling Fusarium graminearum into the country, the fungus is already prevalent in the U.S. — particularly in the east and Upper Midwest — and scientists have been studying it for decades. Researchers often bring foreign plants, animals and even strains of fungi to the U.S. to study them, but they must file certain permits before moving anything across state or national borders. Studying the genes of a foreign fungus strain, for example, can help scientists learn how it tolerates heat, resists pesticides or mutates. 'We look at variations among individuals just like we do humans,' said Nicole Gauthier, a plant pathologist at the University of Kentucky who studies Fusarium. That said, it's unclear why the Chinese researchers might have wanted to bring that strain of Fusarium graminearum into the U.S. and why they didn't fill out the proper paperwork to do so.
Yahoo
18 hours ago
- Yahoo
A Japan-based company will attempt to land on the moon. Here's why its lander spent months, not days, in space
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. Nearly five months ago, a SpaceX rocket launched out of Florida carrying two lunar landers. The Blue Ghost spacecraft, from Texas-based Firefly Aerospace, zoomed to the moon, and in March it became the first robotic commercial vehicle to land upright on the lunar surface. The other spacecraft, developed by Japan-based company Ispace, is just now arriving at its destination. Resilience, as the uncrewed lunar lander is called, is on track to make its touchdown attempt at 3:24 p.m. ET on Thursday — three months after its rideshare buddy made history. Ispace isn't too concerned about losing out on a 'first' superlative. And company executives said that taking a slow and steady path to the moon can offer Ispace some long-term advantages. 'What is good about this four- or five-month trajectory is, every day, there are small things that happen … something we didn't expect,' Ispace Chief Financial Officer Jumpei Nozaki told CNN in January. 'This (journey to the moon) is really a learning phase.' Three teams of Ispace employees have been rotating in and out of the company's mission control room in Tokyo, racking up months' worth of practice in overseeing the unpredictable and daring physics of deep-space travel — a rare opportunity, the company's founder and CEO, Takeshi Hakamada, told CNN. Such a gradual approach to the moon does not, however, guarantee landing success. Ispace's first attempt to put a spacecraft on the lunar surface ended with a crash landing in April 2023 after a 4 ½-month journey from Earth. Ultimately, Resilience's long trajectory offers Ispace both pros and cons. Resilience is on a path to the moon that's often referred to as a low-energy transfer. It's essentially a slow, cruising route — much like traveling to a friend's house on a bike and coasting on the downhills, using little fuel or energy. On such a path, the Resilience lander travels for hundreds of thousands of miles, soaring into deep space and waiting for the moon's gravity to naturally capture the spacecraft into lunar orbit. In contrast, other vehicles such as Firefly Aerospace's Blue Ghost and the Nova-C lander, developed by Texas-based company Intuitive Machines, have used large engines to fire themselves on a much more direct path. Intuitive Machines' latest Nova-C lander, for example, reached the moon about a week after takeoff. Compared with lunar landers developed by Ispace's competitors, Resilience is lightweight and relatively cheap with a smaller rocket engine. All the time Resilience spends in orbit allows mission operators to 'verify many kinds of systems during this long journey,' such as the vehicle's sensors, navigation and other software systems, Nozaki said. But there are downsides, too. And Nozaki said that, no matter the outcome of Resilience's trip, Ispace will abandon the low-energy transfer approach with its third mission. Ispace's upcoming lunar lander, called Apex 1.0, will be flown in partnership with Massachusetts-based company Draper, under CLPS for the Artemis program, with the aim of taking a more direct route to the moon. Reaching the moon quickly is also 'really important for our customers,' Nozaki said. These clients include research groups, companies and governments that pay Ispace to fly cargo such as science instruments on board the lunar lander. Spending months in transit can put extra wear on instruments as they are exposed to the intense radiation environment and wild temperature swings of space before they begin operating on the lunar surface, according to Ispace. Still, the company is hopeful a group of three science instruments currently on board Resilience will carry out exciting tests after the vehicle reaches the moon on Thursday. Resilience is carrying a module designed to test algae-based food production, a deep-space radiation monitor and a water electrolyzer experiment, which is a device that aims to generate hydrogen and oxygen in the lunar environment. Ispace's first lunar lander was descending toward the Atlas crater, a feature on the northeast side of the moon's near face, when it crashed in April 2023. This go-around, the company is aiming to land in a different lunar location: a 750-mile-long (1,200-kilometer) plain called Mare Frigoris — or the 'Sea of Cold' — which lies in the moon's far northern reaches. Mare Frigoris is significantly flatter than the Atlas crater region, potentially offering easier-to-navigate terrain. Ispace said in a statement that the new landing site was chosen because it offers 'flexibility.' The company plans to livestream Thursday's touchdown attempt on YouTube and X. If Resilience lands upright, Ispace will become the first commercial company outside of the US to pull off such a feat. Ispace would also join Firefly, whose Blue Ghost lander made a pristine landing in March, in becoming the only two companies to complete a fully successful touchdown of a robotic lunar lander. Intuitive Machines has landed two vehicles on the moon, both in the vicinity of the lunar south pole. Each of those spacecraft landed on its side, however, limiting the science and research the company could carry out. Both Firefly Aerospace and Intuitive Machines are contractors for NASA's Commercial Lunar Payload Services, or CLPS, initiative, which is part of the space agency's Artemis program — a framework under which NASA plans to return humans to the moon for the first time in more than 50 years. Robotic missions carried out under CLPS are meant to serve as scientific pathfinders, paving the way for astronauts' return.