logo
Rubin Observatory's first images flaunt millions of galaxies. Take a look.

Rubin Observatory's first images flaunt millions of galaxies. Take a look.

Yahoo14 hours ago

A massive new telescope with the world's largest digital camera is expected to create the most comprehensive digital movie of the night sky ever attempted, capturing about 40 billion space objects.
The Vera C. Rubin Observatory in northern Chile released its first images to the public on Monday. Later this year, it will begin its primary project, the Legacy Survey of Space and Time, sweeping across the entire visible southern sky every three to four nights for at least a decade. The goal is to create the most detailed time-lapse view of the cosmos so far, allowing astronomers to track objects that move and those that change brightness.
In just 10 hours of test observations, Rubin has already demonstrated its power. It captured over 2,000 previously unknown asteroids in our solar system, plus millions of stars and galaxies. The rollout is a sneak peek at what the observatory will do for the next 10 years: Each night, it'll snap about 1,000 high-definition photos — providing a veritable "firehose of data," researchers say.
For astronomers, this means catching sight of supernova explosions, pulsating stars, and near-Earth asteroids and comets. Some of these images could reveal ripples in space-time, offering hints of invisible forces shaping the cosmos. For the rest of us, it means better planetary defense, potential discoveries of unknown objects, and, of course, beautiful eye candy.
"Between objects in most astronomical pictures, it kind of looks like inky black space. That's what you've seen before, but that's not what you saw here," said Steven Ritz, the project scientist for Rubin's construction, during a livestreamed news conference. "That inky black space actually is full of stuff. It's full of galaxies. It's full of all kinds of interesting things."
SEE ALSO: Spectacular Webb telescope image shows a stellar death like never before
Two spiral galaxies appear to tumble through space in this first-look image of a portion of the Virgo cluster. Credit: RubinObs / NOIRLab / SLAC / NSF / DOE / AURA
The observatory, built by the U.S. Department of Energy and the National Science Foundation, sits atop a desert mountain, Cerro Pachón, high in the Chilean Andes, where the skies are clear, dry, and stable. It's named for astronomer Vera Rubin, who uncovered early evidence of so-called "dark matter," a mysterious-yet-abundant substance in space that doesn't shine or interact with light, according to NASA. Now Rubin's namesake observatory will try to crack the code of that material and probe some of the other biggest cosmic mysteries.
With a primary mirror that stretches 28 feet wide, Rubin isn't the biggest telescope in the world — but it may be among the busiest. It's equipped with a hulking digital camera that's the size of a small car and twice as heavy. With 3,200 megapixel resolution, a full picture from the camera would require a wall of 400 TVs covering a basketball court.
The telescope's unusual design, which allows the large instrument to swivel nimbly, makes all of this possible. At full tilt, the 300-ton structure can revolve all the way around in about a half-minute, with magnetic motors allowing it to coast on a thin layer of oil.
"No other large telescope in the world can move this fast," said Željko Ivezić, director of the observatory's construction. "It moves around in seconds. Other large telescopes take minutes."
The observatory has the potential to discover 5 million new asteroids in just two years. Over the next 10 years, Rubin will take pictures of about 20 billion galaxies.
In its debut, the telescope turned its eye toward two familiar showstoppers in deep space: the Trifid and Lagoon nebulas in the constellation Sagittarius. These colorful clouds of gas and dust, each thousands of light-years away, are baby star nurseries.
The Trifid nebula, top right, glows a pinkish hue surrounded in blue above the sprawling Lagoon nebula, both thousands of light-years from Earth. Credit: RubinObs / NOIRLab / SLAC / NSF / DOE / AURA
The Trifid glows with pinks and blues, carved by young stars punching through the haze. Nearby, the Lagoon sprawls in a soft rosy glow, its tangled wisps shaped by stellar winds.
Rubin's early snapshots also include a bustling corner of the universe: the Virgo Cluster, a grouping of galaxies bound together by gravity. Among them are two luminous spiral galaxies that shine in bright, electric blue — cosmic pinwheels spinning in the dark.
The sky survey is expected to undertake the biggest supernova hunt ever — specifically focusing on exploding stars known as Type Ia supernovas.
Myriad galaxies stretch across this frame, which only shows a portion of the Virgo cluster. Credit: RubinObs / NOIRLab / SLAC / NSF / DOE / AURA
These events happen when a white dwarf — a small, dying star — gets too heavy and blows apart. The supernovas, sometimes dubbed "cosmic yardsticks," shine brightly for a short time and give off a predictable, known amount of light. That makes them perfect for measuring distance in space: The farther the supernova, the fainter it appears to us. By collecting light from these blasts, scientists can figure out how fast the universe has been stretching as that light traveled here.
This matters because scientists are trying to learn more about dark energy — a mysterious force that seems to be, counterintuitively, pushing the universe to expand faster over time. By comparing millions of these explosions across different distances, Rubin might be able to piece together whether dark energy is changing, which could rewrite what we know about the universe's age and what's to come in the future.
"When I look at the images, I often don't pay attention to the beautiful nearby galaxies. I look at the little fuzz balls," said Aaron Roodman, who leads the team that built the camera. "Many of those galaxies are 5 or perhaps even 10 billion light-years away and have up to 100 billion stars in them, and those are the galaxies actually that we use the most if we want to study the expansion of the universe and dark energy."

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Japan launches third rocket to measure climate change
Japan launches third rocket to measure climate change

UPI

time3 hours ago

  • UPI

Japan launches third rocket to measure climate change

A Falcon 9 with Dragon Spacecraft carrying NASA's SpaceX Crew-10 Mission lifts off from Launch Complex 39A at Kennedy Space Center in Florida, in partnership with Japan Aerospace Exploration Agency in March. File photo by Pat Benic/UPI | License Photo June 29 (UPI) -- A Japanese company has launched a rocket designed to monitor sea temperature and greenhouse gases as part of its overall mission to study the effects of climate change on the atmosphere. The Japanese Aerospace Exploration Company launched its 50th and final H-2A rocket mission, sending the GOSAT-GW into orbit from the Yoshinobu Launch Complex at the Tanegashima Space Center in Japan on Sunday. This is the third GOSAT mission to study the effects of climate change on ocean temperatures and fossil fuel and other greenhouse gases and their effect on the planet's ecosystems. The Sunday mission joins the previous flights already in orbit, GCOM-W2, which launched in 2012, known as "SHIZIKU," and GOSAT-1, known as "IBUKI," which was deployed in 2009. Among other instruments, GOSAT-GW is carrying a spectrometer named TANSO to aid in measuring the effects of greenhouse-related climate change. "The obtained data will be used to monitor water vapor profiles, sea ice, and soil water content," the GOSAT website said. Other instruments will monitor sunlight reflection during daylight hours and target and other large emission sources such as power loans and oil and gas facilities.

Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave
Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave

Yahoo

time5 hours ago

  • Yahoo

Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave

A scientific paper was recently published on Cornell University's arXiv describing a radio burst that lasted for a mere 30 nanoseconds. Maybe that doesn't sound too exciting, except that the signal was thought to come from another galaxy. But then it turned out it was just from a satellite. But then it turned out that the satellite had been dead for decades and couldn't actually produce a transmission like that. So now it's a story about a zombie satellite sending impossible messages from beyond the grave, in space. Interested yet? In June 2024, the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope detected what was thought to be a fast radio burst (FRB). Makes sense, as that was exactly what the telescope was trying to find. From reporting by FRBs remain something of a mystery even 20 years after their discovery, which of course just make scientists want to study them more. So detecting one was pretty great... until the team examining the find realized that the FRB made no sense at all. For one thing, the signal was too short — FRBs typically last micro- or milliseconds, not mere nanoseconds. Yes, those time frames are all incredibly small, but they are orders of magnitude apart. The radio telescope's image of it was also very fuzzy, which, like with a normal camera, indicated that the source was actually very, very close, not in a distant galaxy, where other FRB signals were from. What on Earth (or off it) was going on? Well, the answer turned out to be very boring, right before it got incredibly weird. Read more: These Cars Are Going To Age Terribly Once scientists had worked out the exact origin position of the signal, they realized that it was actually so close to Earth that it might well be a satellite, per New Scientist. They cross-referenced with known orbits, and sure enough, one popped up. Ah, darn, just a satellite then. No big deal — hey wait, is that satellite dead? Yes, and not just dead, but long dead. NASA's Relay 2 was in fact one of the first ever satellites, launched all the way back in 1964 at the dawn of the space age. Along with its sister Relay 1, these were experimental communications satellites intended to map the Van Allen radiation belt, per our friends at Gizmodo. Then in June 1967 (everything in this story happens in June, weird), the transponders failed, and that was the end of that. Except, now it isn't. Apparently the long-dead experimental communications satellite decided to get very experimental with its communications, since it sent out a radio burst all of a sudden. If you're wondering how a dead satellite can do that, you're not alone, because no one knows for sure. In fact, the on-board equipment is not even capable of transmitting a 30 nanosecond pulse. Rising from the grave to send impossible messages? What is this, space Ouija? In their scientific paper, the team theorizes one of two possible explanations, as lays out. First is that an electrostatic discharge (ESD) might have built up, causing a brief spark that caused a radio burst. Think of rubbing your hand along a carpet, then touching something metal. In space, the "carpet" would be ionized gas or plasma, so if Relay 2 passed through some of that, it might have sparked. This has actually been observed before, but again, at much longer timescales than 30 nanoseconds, which might count against this theory. If it does prove to be true, it actually has some practical value. ESDs are known to cause damage to satellites, but they are difficult to detect. Possibly, these scientists have stumbled on a way to detect them, making it easier to diagnose a faulty satellite. The second theory, as if this all couldn't get any better, was that the zombie satellite was actually hit by a teeny tiny micrometeorite traveling at 44,000 mph. This little hypothetical guy would only be a few micrograms, but if it struck Relay 2, it would create a puff of charged plasma, which is what the radio telescope would have detected. Both of these are still just theories, and really, nobody knows for sure. If you think that space necromancers must surely be involved, I wouldn't doubt it. It all just goes to show that space is a vast, weird place, and even our brightest minds are still only just scratching the surface of all it has to tell us. Want more like this? Join the Jalopnik newsletter to get the latest auto news sent straight to your inbox... Read the original article on Jalopnik.

Morrison students help University of Michigan researchers with NASA solar disturbance study
Morrison students help University of Michigan researchers with NASA solar disturbance study

Yahoo

time9 hours ago

  • Yahoo

Morrison students help University of Michigan researchers with NASA solar disturbance study

Jun. 28—MORRISON — High school students across the U.S., including 10 from Morrison High School, have been part of a project that has detected radio waves associated with solar disturbances using $500 antenna kits, contributing real scientific data to NASA. The data helps scientists understand these disturbances and could help create early warnings to protect satellites and power grids on Earth, as well as astronauts and their equipment from dangerous solar storms. Morrison High School got involved in the program in October 2023, when 10 MHS students from now-retired teacher Gregg Dolan's physics class helped University of Michigan research professor and MHS graduate Ward "Chip" Manchester assemble and install an antenna on the school's roof. Those students were Zayden Boonstra, Blake Adams, Caden Bielema, Lisa Hardesty, Cameron McDonnell, Madison Banks, Alyvia Behrens, Cooper Bush, Chase Newman and Gigi Connelly. "The students thoroughly enjoyed helping set up the antenna and learning what's going on and figuring stuff out in space, because they just don't get a lot of it in school," said Dolan, who for the last 18 years of his career would devote the third quarter of the physics class to astronomy. "I also gave a presentation about the mission, coronal mass ejections, solar eruptions and how they propagate through space, and how the radio emission occurs," Manchester said. "One student who had gone to Morrison was a freshman in the College of Engineering at Michigan, and was also there helping out." The antenna they put up is part of the SunRISE Ground Radio Lab, a science program inviting people to use a multifrequency radio telescope to listen to radio signals from space. The SunRISE GRL is a collaborative effort between UM and NASA's Sun Radio Interferometer Space Experiment mission. UM associate research scientist and SunRISE GRL lead researcher Mojtaba Akhavan-Tafti said SunRISE is a group of six small satellites that will work together to study the sun's low-frequency radio emissions. It will help scientists better understand how solar storms form. Akhavan-Tafti said the SunRISE mission began in 2018, when NASA selected a collaborative proposal from UM and NASA's Jet Propulsion Laboratory to move forward with development. By 2020, the college had launched a multidisciplinary design program, bringing together undergraduate and graduate students to design, build and test ground-based antenna arrays in support of the SunRISE satellite mission. "After that program successfully launched, NASA came back to us and said, 'Hey, given the success of the program, do you think you could get high school students involved in the project?'" Akhavan-Tafti said. "We accepted the challenge." The SunRISE GRL now works with 18 high schools nationwide, building antennas that detect radio waves from solar phenomena. The dual dipole antennas are designed to detect a specific range of low radio frequencies — between 8 and 24 megahertz — that are linked to solar events such as coronal mass ejections, which emit radio waves as they form and travel through space. "Instead of making the antennas that were costing us around $25,000 a unit, we took it to our team, and we redesigned the antenna to be only $500," Akhavan-Tafti said. "It's a different type of antenna, different type of frequency; however, it observes the same phenomena in space." That data helps in understanding space weather and its effects on technology and human life, providing early warnings of CMEs that can affect Earth. "We can look at these solar radio bursts to tell us many days in advance that there is a storm potentially coming so that you can prepare for those types of big solar events, and so that your assets and astronauts are operating in safe environments," Akhavan-Tafti said. Although scientists still are figuring out exactly when during a CME's journey these radio signals are produced, Akhavan-Tafti said the waves themselves travel at the speed of light — reaching Earth in just minutes or hours, far faster than the CMEs, which can take days to arrive. According to the National Weather Service's Space Weather Prediction Center, a CME is a massive burst of solar plasma and magnetic field released from the sun's outer atmosphere, or corona. These eruptions can trigger geomagnetic storms that may disrupt satellites, power grids and communications on Earth. Akhavan-Tafti said the latest results from the SunRISE GLR program focus on validating the new instruments by confirming they can detect patterns seen in past studies. "When you come up with a new instrument, you want to first make sure that it replicates previous data," Akhavan-Tafti said. "Not every surprise is a good surprise." A study, which Akhavan-Tafti said was released Wednesday, June 25, links solar radio bursts — specifically Type II radio bursts — to CMEs, as previous high-resolution space- and ground-based observations have done. What sets SunRISE apart is its use of interferometry, a method where signals from multiple antennas with unknown exact positions are combined to pinpoint the source of radio emissions. Akhavan-Tafti said this is the first time such a technique has been applied to this kind of solar observation. "One of the open science questions, after all this time, is: Exactly where are these signals coming from?" Akhavan-Tafti said. Together, the students and researchers are seeking to answer that and other research questions, such as: What are the mechanisms behind solar flares and CMEs? How do they manifest in radio emissions? What are the mechanisms behind various types of radio bursts observed on the sun, and how do they relate to space weather phenomena? Akhavan-Tafti said the SunRISE GRL aims to inspire the next generation of science, technology, engineering, arts and math students through hands-on citizen-science activities. "It would be great if they're exposed to STEAM and those types of activities to get a sense of what it's like to be a scientist or an engineer or an entrepreneur in the sciences," Akhavan-Tafti said. "That requires students to be trained to understand that these careers exist and to take courses that are going to prepare them for those types of future careers, and that's what NASA wanted us to do." One of the key scientific advantages of the SunRISE mission is its ability to detect very low-frequency radio waves — right down to what is called the plasma cutoff frequencies, which Manchester said are the "lowest frequencies available to the antenna." On Earth, the ionosphere acts as a filter, blocking radio waves below a certain frequency. "The ionosphere can only allow radio waves of certain frequencies to pass through. High frequencies go through OK, but if a frequency gets too low, the ionosphere absorbs it," Manchester said. "It almost becomes what's called the plasma frequency ... and it will just absorb it, almost like a DC current." Manchester said this makes the space-based SunRISE array especially powerful. "We have this cutoff frequency that we have to deal with, where we can't see radio waves below that frequency on Earth's surface because the ionosphere absorbs it," Manchester said. "The space mission doesn't have that issue ... so it can go to much, much lower frequencies." He said that access to lower frequencies in space is what makes the mission so compelling. "That allows us to track features much further out into the solar wind. The further out they go, the lower the natural frequency," Manchester said. "On Earth, those get cut off pretty quickly. But in space, we're gonna be able to track them much, much further out." For Akhavan-Tafti, the impact of the program goes beyond research. "These types of programs are allowing us to use federal funding to educate the next generation of entrepreneurs, policymakers, scientists and engineers of our nation," Akhavan-Tafti said. He hopes more schools will take advantage of the opportunity. "This is an open call — if any other high schools in the area think that they could benefit from this, everything is free of charge to the schools," Akhavan-Tafti said. "If they're interested in getting involved, they're welcome to contact us." For more information or to contact Akhavan-Tafti, visit the project's website at

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store