
‘More Than a Hint' That Dark Energy Isn't What Astronomers Thought
An international team of astronomers on Wednesday unveiled the most compelling evidence to date that dark energy — a mysterious phenomenon pushing our universe to expand ever faster — is not a constant force of nature but one that ebbs and flows through cosmic time.
Dark energy, the new measurement suggests, may not resign our universe to a fate of being ripped apart across every scale, from galaxy clusters down to atomic nuclei. Instead, its expansion could wane, eventually leaving the universe stable. Or the cosmos could even reverse course, eventually doomed to a collapse that astronomers refer to as the Big Crunch.
The latest results bolster a tantalizing hint from last April that something was awry with the standard model of cosmology, scientists' best theory of the history and the structure of the universe. The measurements, from last year and this month, come from a collaboration running the Dark Energy Spectroscopic Instrument, or DESI, on a telescope at Kitt Peak National Observatory in Arizona.
'It's a bit more than a hint now,' said Michael Levi, a cosmologist at Lawrence Berkeley National Laboratory and the director of DESI. 'It puts us in conflict with other measurements,' Dr. Levi added. 'Unless dark energy evolves — then, boy, all the ducks line up in a row.'
The announcement was made at a meeting of the American Physical Society in Anaheim, Calif., and accompanied by a set of papers describing the results, which are being submitted for peer review and publication in the journal Physical Review D.
'It's fair to say that this result, taken at face value, appears to be the biggest hint we have about the nature of dark energy in the ~25 years since we discovered it,' Adam Riess, an astrophysicist at Johns Hopkins University and the Space Telescope Science Institute in Baltimore who was not involved in the work but shared the 2011 Nobel Prize in Physics for discovering dark energy, wrote in an email.
But even as the DESI observations challenged the standard model of cosmology, a separate result has reinforced it. On Tuesday, the multinational team that ran the Atacama Cosmology Telescope in Chile released the most detailed images ever taken of the infant universe, when it was a mere 380,000 years old. (That telescope was decommissioned in 2022.)
Their report, not yet peer-reviewed, seems to confirm that the standard model was operating as expected in the early universe. One element in that model, the Hubble constant, describes how fast the universe is expanding, but over the last half-century measurements of the constant have starkly disagreed, an inconsistency known as the Hubble tension. Theorists have mused that perhaps an additional spurt of dark energy in the very early universe, when conditions were too hot for atoms to form, could resolve this tension.
The latest Atacama results seem to rule out this idea. But they say nothing about whether the nature of dark energy might have evolved later in time.
Both reports evoked effusive praise from other cosmologists, who simultaneously confessed to a cosmic confusion about what it all meant.
'I don't think much is left standing as far as good ideas for what might explain the Hubble tension at this point,' said Wendy Freedman, a cosmologist at the University of Chicago who has spent her life measuring the universe and was not involved in either study.
Michael Turner, a theorist at the University of Chicago, who was also not involved in the studies, said: 'The good news is, no cracks in the cosmic egg. The bad news is, no cracks in the cosmic egg.'
Dr. Turner, who coined the term 'dark energy,' added that if there was a crack, 'it has not opened wide enough — yet — for us to clearly see the next big thing in cosmology.'
Dark expectations
Astronomers often compare galaxies in an expanding universe to raisins in a baking cake. As the dough rises, the raisins are carried farther apart. The farther they are from each other, the faster they separate.
In 1998, two groups of astronomers measured the expansion of the universe by studying the brightness of a certain type of supernova, or exploding star. Such supernovas generate the same amount of light, so they appear predictably fainter at farther distances. If the expansion of the universe were slowing, as scientists believed at the time, light from faraway explosions should have appeared slightly brighter than foreseen.
To their surprise, the two groups found that the supernovas were fainter than expected. Instead of slowing down, the expansion of the universe was actually speeding up.
No energy known to physicists can drive an accelerating expansion; its strength should abate as it spreads ever more thinly across a ballooning universe. Unless that energy comes from space itself.
This dark energy bore all the earmarks of a fudge factor that Albert Einstein inserted into his theory of gravity back in 1917 to explain why the universe was not collapsing under its own weight. The fudge factor, known as the cosmological constant, represented a kind of cosmic repulsion that would balance gravity and stabilize the universe — or so he thought. In 1929, when it became clear that the universe was expanding, Einstein abandoned the cosmological constant, reportedly calling it his biggest blunder.
But it was too late. One feature of quantum theory devised in 1955 predicts that empty space is foaming with energy that would produce a repulsive force just like Einstein's fudge factor. For the last quarter-century, this constant has been part of the standard model of cosmology. The model describes a universe born 13.8 billion years ago, in a colossal spark known as the Big Bang, and composed of 5 percent atomic matter, 25 percent dark matter and 70 percent dark energy. But the model fails to say what dark matter or dark energy actually are.
If dark energy really is Einstein's constant, the standard model portends a bleak future: The universe will keep speeding up, forever, becoming darker and lonelier. Distant galaxies will eventually be too far away to see. All energy, life and thought will be sucked from the cosmos.
'Something to go after'
Astronomers on the DESI team are trying to characterize dark energy by surveying galaxies in different eras of cosmic time. Tiny irregularities in the spread of matter across the primordial universe have influenced the distances between galaxies today — distances that have expanded, in a measurable way, along with the universe.
Data used for the latest DESI measurement consisted of a catalog of nearly 15 million galaxies and other celestial objects. Alone, the data set does not suggest that anything is awry with the theoretical understanding of dark energy. But combined with other strategies for measuring the expansion of the universe — for instance, studying exploding stars and the oldest light in the universe, emitted some hundred thousand years after the Big Bang — the data no longer lines up with what the standard model predicts.
The discrepancy between data and theory is at most 4.2 sigma (in the units of uncertainty preferred by physicists), representing one in 50,000 chances that the results are a fluke. But the mismatch is not yet at five sigma (equal to one in 3.5 million chances), the stringent standard set by physicists to claim a discovery.
Still, the disconnect is enticingly suggestive that something in the cosmological model is not well understood. Scientists might need to revise how they interpret gravity or make sense of the ancient light from the Big Bang. DESI astronomers think the problem could be the nature of dark energy.
'If we introduce a dynamical dark energy, then the pieces of the puzzle fit together better,' said Mustapha Ishak-Boushaki, a cosmologist at the University of Texas at Dallas who helped lead the latest DESI analysis.
Will Percival, a cosmologist at the University of Waterloo in Ontario and a spokesperson for the DESI collaboration, expressed excitement about what lies on the horizon. 'This is actually a little bit of a shot in the arm for the field,' he said. 'Now we've got something to go after.'
In the 1950s, astronomers claimed that only two numbers were needed to explain cosmology: one related to how fast the universe was expanding and another describing its deceleration, or how much that expansion was slowing down. Things changed in the 1960s, with the discovery that the universe was bathed in light from the Big Bang, known as the cosmic microwave background. Measuring this background radiation allowed scientists to investigate the physics of the early universe and the way that galaxies subsequently formed and evolved. As a result, the standard model of cosmology now requires six parameters, including the density of both ordinary and dark matter in the universe.
As cosmology has become more precise, additional tensions have arisen between predicted and measured values of these parameters, leading to a profusion of theoretical extensions to the standard model. But the latest results from the Atacama Cosmology Telescope — the clearest maps to date of the cosmic microwave background — seem to slam the door on many of these extensions.
DESI will continue collecting data for at least another year. Other telescopes, on the ground and in space, are charting their own views of the cosmos; among them are the Zwicky Transient Facility in San Diego, the European Euclid space telescope and NASA's recently launched SPHEREx mission. In the future, the Vera C. Rubin Observatory will begin recording a motion picture of the night sky from Chile this summer, and NASA's Roman Space Telescope is set to launch in 2027.
Each will soak up the light from the sky, measuring pieces of the cosmos from different perspectives and contributing to a broader understanding of the universe as a whole. All serve as ongoing reminders of just what a tough egg the universe is to crack.
'Each of these data sets comes with its own strengths,' said Alexie Leauthaud, a cosmologist at the University of California, Santa Cruz, and a spokesperson for the DESI collaboration. 'The universe is complicated. And we're trying to disentangle a lot of different things.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles

Business Insider
35 minutes ago
- Business Insider
AI isn't replacing radiologists. Instead, they're using it to tackle time-sucking administrative tasks.
Generative AI powered by large language models, such as ChatGPT, is proliferating in industries like customer service and creative content production. But healthcare has moved more cautiously. Radiology, a specialty centered on analyzing digital images and recognizing patterns, is emerging as a frontrunner for adopting new AI techniques. That's not to say AI is new to radiology. Radiology was subject to one of the most infamous AI predictions when Nobel Prize winner Geoffrey Hinton said, in 2016, that " people should stop training radiologists now." But nearly a decade later, the field's AI transformation is taking a markedly different path. Radiologists aren't being replaced, but are integrating generative AI into their workflows to tackle labor-intensive tasks that don't require clinical expertise. "Rather than being worried about AI, radiologists are hoping AI can help with workforce challenges," explained Dr. Curt Langlotz, the senior associate vice provost for research and professor of radiology at Stanford. Regulatory challenges to generative AI in radiology Hinton's notion wasn't entirely off-base. Many radiologists now have access to predictive AI models that classify images or highlight potential abnormalities. Langlotz said the rise of these tools "created an industry" of more than 100 companies that focus on AI for medical imaging. The FDA lists over 1,000 AI/ML-enabled medical devices, which can include algorithms and software, a majority of which were designed for radiology. However, the approved devices are based on more traditional machine learning techniques, not on generative AI. Ankur Sharma, the head of medical affairs for medical devices and radiology at Bayer, explained that AI tools used for radiology are categorized within computer-aided detection software, which helps analyze and interpret medical images. Examples include triage, detection, and characterization. Each tool must meet regulatory standards, which include studies to determine detection accuracy and false positive rate, among other metrics. This is especially challenging for generative AI technologies, which are newer and less well understood. Characterization tools, which analyze specific abnormalities and suggest what they might be, face the highest regulatory standards, as both false positives and negatives carry risks. The idea of a kind of gen AI radiologist capable of automated diagnosis, as Hinton envisioned, would be categorized as "characterization" and would have to meet a high standard of evidence. Regulation isn't the only hurdle generative AI must leap to see broader use in radiology, either. Today's best general-purpose large language models, like OpenAI's GPT4.1, are trained on trillions of tokens of data. Scaling the model in this way has led to superb results, as new LLMs consistently beat older models. Training a generative AI model for radiology at this scale is difficult, however, because the volume of training data available is much smaller. Medical organizations also lack access to compute resources sufficient to build models at the scale of the largest large language models, which cost hundreds of millions to train. "The size of the training data used to train the largest text or language model inside medicine, versus outside medicine, shows a one-hundred-times difference," said Langlotz. The largest LLMs train on databases that scrape nearly the entire internet; medical models are limited to whatever images and data an institution has access to. Generative AI's current reality in radiology These regulatory obstacles would seem to cast doubt on generative AI's usefulness in radiology, particularly in making diagnostic decisions. However, radiologists are finding the technology helpful in their workflows, as it can undertake some of their daily labor-intensive administrative tasks. For instance, Sharma said, some tools can take notes as radiologists dictate their observations of medical images, which helps with writing reports. Some large language models, he added, are "taking those reports and translating them into more patient-friendly language." Dr. Langlotz said a product that drafts reports can give radiologists a "substantial productivity advantage." He compared it to having resident trainees who draft reports for review, a resource that's often available in academic settings, but less so in radiology practices, such as a hospital's radiology department. Sharma said that generative AI could help radiologists by automating and streamlining reporting, follow-up management, and patient communication, giving radiologists time to focus more on their "reading expertise," which includes image interpretation and diagnosis of complex cases. For example, in June 2024, Bayer and Rad AI announced a collaboration to integrate generative AI reporting solutions into Bayer's Calantic Digital Solution Platform, a cloud-hosted platform for deploying AI tools in clinical settings. The collaboration aims to use Rad AI's technology to help radiologists create reports more efficiently. For example, RadAI can use generative AI transcription to generate written reports based on a radiologist's dictated findings. Applications like this face fewer regulatory hurdles because they don't directly influence diagnosis. Looking ahead, Dr. Langlotz said he foresees even greater AI adoption in the near future. "I think there will be a change in radiologists' day-to-day work in five years," he predicted.
Yahoo
5 hours ago
- Yahoo
Some Black Holes May Be Portals Through Spacetime In Disguise
Here's what you'll learn when you read this story: Theoretical physicists have long debated the possible existence of wormholes, which are mathematically possible, but no evidence points to their physical existence. One theory suggests that these hypothetical tunnels in spacetime could be masquerading as black holes, as both objects share similar characteristics as a result of existing right on the edge of where known physics breaks down. A new study adds more evidence to this conjecture by analyzing quasi-normal modes—distinctive vibrations in space-time caused by temporary perturbations—and finds that wormholes could mimic black holes in this particular context. Although traversable wormholes are a popular trope in sci-fi, the space-time structures that connect two different points of the universe are—at least, as of now—completely hypothetical. One of the first types of wormholes ever theorized, the Einstein-Rosen bridge, is simply a specific solution to Einstein's field equations, which map space-time geometry within certain matter and energy conditions. Sadly, these sci-fi dreams rest on the fantastical concept of 'negative energy,' a cosmic phenomenon that simply doesn't exist in the classical universe (though the answer isn't so clear cut in the quantum realm). Due to the space-time strangeness required to form a stable wormhole, some scientists have considered whether certain black holes might actually be wormholes in disguise. Although physical reality makes this a near-impossibility, mathematics shows that it's at least conceivable. Now, a new study has analyzed a certain attribute of Schwarzschild black holes—which are named for German physicist Karl Schwarzschild and are themselves hypothetical objects, as they're black holes that contain no rotation or electric field—known as quasi-normal modes (QNMs). These modes are considered quasi-normal because they describe distinctive vibrations of space-time when a compact object is perturbed (i.e. they don't continue indefinitely). Using different approaches—including a parameterization to define the properties of the area near the 'throat' of a wormhole while analyzing three different perturbation types (scalar, axial gravitational, and electromagnetic)—the researchers concluded that a wormhole could consistently replicate the QNMs associated with static (a.k.a. Schwarzschild) black holes. The results of the study were uploaded to the preprint server arXiv, and the authors note that the study will soon be published in the journal Physical Review D. 'Exotic compact objects—either beyond General Relativity (GR) predictions or arising from unconventional GR assumptions—could theoretically exist, though they remain undetected,' the authors wrote. 'This elusiveness may be due to their ability to closely mimic the observational properties of black holes.' The idea of wormholes masquerading as black holes of all shapes and sizes isn't a new one—in fact, it's a theory that's been debated for decades. More recently, a 2021 study pondered whether active galactic nuclei, or AGN, are actually wormhole mouths rather than supermassive black holes. A year later, a team from Sofia University in Bulgaria concluded that light emitted from a disk surrounding a traversable wormhole would likely be 'nearly identical' to that of a static black hole. Long-standing theories have also wondered if black holes could be paired with mirror twins, known as 'white holes,' which would together form wormholes. Of course, white holes have never been observed or detected either, but once again, the math allows for their existence. This new study adds to that growing discussion by analyzing the QNM aspect of static black holes and finding that the two are also similar. 'We can say that a wormhole can effectively emulate the Schwarzschild black hole in general relativity in its fundamental mode and first overtone across the three distinct perturbation types considered individually,' the authors wrote. The authors also expect to build on this approach by improving near-throat parameters and analyzing the polar gravitational perturbations theoretically exhibited by both wormholes and black holes (though the problem presents a few computational difficulties that will need solving). For now, wormholes remain firmly in the realm of science fiction. But with mathematics continuing to prove that such objects are possible, scientists will continue to search for these bridges across the universe. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?
Yahoo
18 hours ago
- Yahoo
What if the Big Bang wasn't the beginning? New research suggests it may have taken place inside a black hole
When you buy through links on our articles, Future and its syndication partners may earn a commission. The Big Bang is often described as the explosive birth of the universe — a singular moment when space, time and matter sprang into existence. But what if this was not the beginning at all? What if our universe emerged from something else — something more familiar and radical at the same time? In a new paper, published in Physical Review D, my colleagues and I propose a striking alternative. Our calculations suggest the Big Bang was not the start of everything, but rather the outcome of a gravitational crunch or collapse that formed a very massive black hole — followed by a bounce inside it. This idea, which we call the black hole universe, offers a radically different view of cosmic origins, yet it is grounded entirely in known physics and observations. Today's standard cosmological model, based on the Big Bang and cosmic inflation (the idea that the early universe rapidly blew up in size), has been remarkably successful in explaining the structure and evolution of the universe. But it comes at a price: it leaves some of the most fundamental questions unanswered. For one, the Big Bang model begins with a singularity — a point of infinite density where the laws of physics break down. This is not just a technical glitch; it's a deep theoretical problem that suggests we don't really understand the beginning at all. To explain the universe's large-scale structure, physicists introduced a brief phase of rapid expansion into the early universe called cosmic inflation, powered by an unknown field with strange properties. Later, to explain the accelerating expansion observed today, they added another "mysterious" component: dark energy. Related: 5 fascinating facts about the Big Bang, the theory that defines the history of the universe In short, the standard model of cosmology works well — but only by introducing new ingredients we have never observed directly. Meanwhile, the most basic questions remain open: where did everything come from? Why did it begin this way? And why is the universe so flat, smooth, and large? Our new model tackles these questions from a different angle — by looking inward instead of outward. Instead of starting with an expanding universe and trying to trace back how it began, we consider what happens when an overly dense collection of matter collapses under gravity. This is a familiar process: stars collapse into black holes, which are among the most well-understood objects in physics. But what happens inside a black hole, beyond the event horizon from which nothing can escape, remains a mystery. In 1965, the British physicist Roger Penrose proved that under very general conditions, gravitational collapse must lead to a singularity. This result, extended by the late British physicist Stephen Hawking and others, underpins the idea that singularities — like the one at the Big Bang — are unavoidable. The idea helped win Penrose a share of the 2020 Nobel prize in physics and inspired Hawking's global bestseller A Brief History of Time: From the Big Bang to Black Holes. But there's a caveat. These "singularity theorems" rely on "classical physics" which describes ordinary macroscopic objects. If we include the effects of quantum mechanics, which rules the tiny microcosmos of atoms and particles, as we must at extreme densities, the story may change. In our new paper, we show that gravitational collapse does not have to end in a singularity. We find an exact analytical solution — a mathematical result with no approximations. Our maths show that as we approach the potential singularity, the size of the universe changes as a (hyperbolic) function of cosmic time. This simple mathematical solution describes how a collapsing cloud of matter can reach a high-density state and then bounce, rebounding outward into a new expanding phase. But how come Penrose's theorems forbid out such outcomes? It's all down to a rule called the quantum exclusion principle, which states that no two identical particles known as fermions can occupy the same quantum state (such as angular momentum, or "spin"). And we show that this rule prevents the particles in the collapsing matter from being squeezed indefinitely. As a result, the collapse halts and reverses. The bounce is not only possible — it's inevitable under the right conditions. Crucially, this bounce occurs entirely within the framework of general relativity, which applies on large scales such as stars and galaxies, combined with the basic principles of quantum mechanics — no exotic fields, extra dimensions or speculative physics required. What emerges on the other side of the bounce is a universe remarkably like our own. Even more surprisingly, the rebound naturally produces the two separate phases of accelerated expansion — inflation and dark energy — driven not by a hypothetical fields but by the physics of the bounce itself. One of the strengths of this model is that it makes testable predictions. It predicts a small but non-zero amount of positive spatial curvature — meaning the universe is not exactly flat, but slightly curved, like the surface of the Earth. This is simply a relic of the initial small over-density that triggered the collapse. If future observations, such as the ongoing Euclid mission, confirm a small positive curvature, it would be a strong hint that our universe did indeed emerge from such a bounce. It also makes predictions about the current universe's rate of expansion, something that has already been verified. This model does more than fix technical problems with standard cosmology. It could also shed new light on other deep mysteries in our understanding of the early universe — such as the origin of supermassive black holes, the nature of dark matter, or the hierarchical formation and evolution of galaxies. These questions will be explored by future space missions such as Arrakihs, which will study diffuse features such as stellar halos (a spherical structure of stars and globular clusters surrounding galaxies) and satellite galaxies (smaller galaxies that orbit larger ones) that are difficult to detect with traditional telescopes from Earth and will help us understand dark matter and galaxy evolution. These phenomena might also be linked to relic compact objects — such as black holes — that formed during the collapsing phase and survived the bounce. RELATED STORIES —When will the universe die? —Universe may revolve once every 500 billion years — and that could solve a problem that threatened to break cosmology —Scientists may have finally found where the 'missing half' of the universe's matter is hiding The black hole universe also offers a new perspective on our place in the cosmos. In this framework, our entire observable universe lies inside the interior of a black hole formed in some larger "parent" universe. We are not special, no more than Earth was in the geocentric worldview that led Galileo (the astronomer who suggested the Earth revolves around the Sun in the 16th and 17th centuries) to be placed under house arrest. We are not witnessing the birth of everything from nothing, but rather the continuation of a cosmic cycle — one shaped by gravity, quantum mechanics, and the deep interconnections between them. This edited article is republished from The Conversation under a Creative Commons license. Read the original article.