logo
Sunshine abounds as the summer solstice arrives

Sunshine abounds as the summer solstice arrives

Associated Press6 hours ago

Peak sunshine has arrived in the Northern Hemisphere — the summer solstice.
Friday is the longest day of the year north of the equator, where the solstice marks the start of astronomical summer. It's the opposite in the Southern Hemisphere, where it is the shortest day of the year and winter will start.
The word 'solstice' comes from the Latin words 'sol' for sun and 'stitium' which can mean 'pause' or 'stop.' The solstice is the end of the sun's annual march higher in the sky, when it makes its longest, highest arc. The bad news for sun lovers: It then starts retreating and days will get a little shorter every day until late December.
People have marked solstices for eons with celebrations and monuments, including Stonehenge, which was designed to align with the sun's paths at the solstices. But what is happening in the heavens? Here's what to know about the Earth's orbit.
Solstices are when days and nights are at their most extreme
As the Earth travels around the sun, it does so at an angle relative to the sun. For most of the year, the Earth's axis is tilted either toward or away from the sun. That means the sun's warmth and light fall unequally on the northern and southern halves of the planet.
The solstices mark the times during the year when this tilt is at its most extreme, and days and nights are at their most unequal.
During the Northern Hemisphere's summer solstice, the upper half of the earth is tilted toward the sun, creating the longest day and shortest night of the year. This solstice falls between June 20 and 22.
Meanwhile, at the winter solstice, the Northern Hemisphere is leaning away from the sun — leading to the shortest day and longest night of the year. The winter solstice falls between December 20 and 23.
The equinox is when there is an equal amount of day and night
During the equinox, the Earth's axis and its orbit line up so that both hemispheres get an equal amount of sunlight.
The word equinox comes from two Latin words meaning equal and night. That's because on the equinox, day and night last almost the same amount of time — though one may get a few extra minutes, depending on where you are on the planet.
The Northern Hemisphere's spring — or vernal — equinox can land between March 19 and 21, depending on the year. Its fall – or autumnal — equinox can land between Sept. 21 and 24.
On the equator, the sun will be directly overhead at noon. Equinoxes are the only time when both the north and south poles are lit by sunshine at the same time.
What's the difference between meteorological and astronomical seasons?
These are just two different ways to carve up the year.
While astronomical seasons depend on how the Earth moves around the sun, meteorological seasons are defined by the weather. They break down the year into three-month seasons based on annual temperature cycles. By that calendar, spring starts on March 1, summer on June 1, fall on Sept. 1 and winter on Dec. 1.
___
The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Get Ready For The Shortest Day Since Records Began As Earth Spins Faster
Get Ready For The Shortest Day Since Records Began As Earth Spins Faster

Forbes

timean hour ago

  • Forbes

Get Ready For The Shortest Day Since Records Began As Earth Spins Faster

Earth could be about to record its fastest-ever rotation. Since 2020, Earth has been rotating faster than at any point since records began in 1973, with each successive year producing the shortest day. Last year, the shortest day was recorded on July 5, and Earth is expected to get close to this again on or close to July 9, July 22 and August 5, according to "Rapidly spinning globe. Symbolic of time passing, travel and other metaphors of space and time." Earth takes a nominal 24 hours to rotate once on its access, which is equal to 86,400 seconds. Until 2020, Earth's rotation had been gradually slowing down, and the shortest ever day recorded was just 1.05 milliseconds under 86,400 seconds. However, on July 19, 2020, Earth rotated 1.47 milliseconds less than 86,400 seconds. Last year, on July 5, it was even shorter at 1.66 milliseconds. Since 2020, Earth has seen 28 of its fastest days and predictions from International Earth Rotation and Reference Systems Service and U.S. Naval Observatory indicate that Earth will again rotate faster on July 9, July 22 or August 5. The uncertainty comes from the exact position of the moon, which acts as a drag factor, particularly when it's close to the equator. In the long-term, the moon is gradually slowing down the Earth's rotation, its gravitational pull causing tides and making Earth's orbital path around the sun slightly elliptical. Precise measurements of the length of a day come from atomic clocks and monitoring by the IERS. Scientists do not know why Earth's rotation has been speeding up since 2020. various factors are likely at play, including the motion of Earth's core and mantle, a shifting of mass due to the melting of ice sheets and glaciers, and variations in ocean currents and air movement. All of these could influence the day length by milliseconds. It could also be down to the 'Chandler wobble' — the movement of Earth's geographical poles across its surface. Historically, international timekeepers have added leap seconds to keep atomic time aligned with Earth's spin. However, since Earth is now rotating faster, not slower, so leap seconds are redundant. Instead, negative leap seconds— i.e., removing a second) — are being considered. IERS confirmed earlier this month that no leap second would be added in 2025. The last leap second was positive and used at the end of December 2016. Scientists are unsure what to do because the current speeding-up may be a blip in a longer trend of Earth's rotation slowing. It may seem trivial, but the fact that Earth is spinning faster in 2025, shaving milliseconds off the day, is critical for maintaining time accuracy worldwide. Maintaining alignment between Earth time and atomic time is crucial for GPS and satellite navigation, financial systems reliant on precise timestamps and synchronizing networks across the world.

Summer Solstice 2025: The Exact Time For Every U.S. State
Summer Solstice 2025: The Exact Time For Every U.S. State

Forbes

time2 hours ago

  • Forbes

Summer Solstice 2025: The Exact Time For Every U.S. State

The 2025 solstice — the longest day of the year in the Northern Hemisphere and the shortest in the Southern Hemisphere — will occur at 02:42 UTC on Saturday, June 21. However, in North America, it happens the previous day. People watch the sun rise, as they take part in the Summer Solstice at Stonehenge in Wiltshire, ... More Friday, June 21, 2024. (Andrew Matthews/PA Wire/PA via AP) June's solstice marks the longest day of the year and the beginning of astronomical summer in the Northern Hemisphere. It's not only the longest day but also the point when daylight begins to shorten. The solstice occurs at a specific global time (02:42 UTC on June 21), so its local time varies across U.S. time zones. The 2025 summer solstice occurs at 10:42 p.m. EDT, 9:42 p.m. CDT, 8:42 p.m. MDT, 7:42 p.m. PDT, 6:42 p.m. AKDT and 4:42 p.m. HST on Friday, June 20. At that precise moment, the sun will be directly overhead at the Tropic of Cancer at noon somewhere on Earth. It's the northernmost point of the sun at noon. Solstice is from the Latin solstitium, sol meaning sun and stit being stationary. That's because, as a consequence of the sun reaching its highest in the sky in the Northern Hemisphere, its rise and set points are at their extreme northeast and northwest, respectively. To the observer, the sun appears to rise farther northeast until June's solstice, when it appears to stand still for a few mornings before rising farther east and south. Although Stonehenge is traditionally associated with the solstice (it's aligned with the rising sun on the solstice), there are other ancient monuments with a solstice link. Egypt's Nabta Playa stone circle, the oldest known astronomical site, tracks the solstice, with no shadows cast by its stones at noon on the date of the solstice. According to Astronomy magazine, Nabta Playa was constructed by a cattle-worshiping cult of nomadic people to mark the summer solstice and the arrival of the monsoons. At 7,000 years old, it's older than Stonehenge. The 2025 solstice will occur at 02:42 UTC on Saturday, June 21, 2025. The Tropic of Cancer is a line 23.4 degrees north of the Earth's equator through The Bahamas, Mexico, Egypt, Libya, Niger, Algeria, Mauritania, Mali, Chad, Saudi Arabia, United Arab Emirates, Oman, India, Myanmar, China and Taiwan. It reflects the tilt of the Earth's axis, which explains why the planet has solstices, equinoxes and seasons. The beginning of astronomical seasons is marked by solstices and equinoxes (equinox means equal night when there are 12 hours of daylight and 12 hours of darkness). The spring or vernal equinox occurs between March 19-21, the June solstice June 20 and 22, the September equinox September 21-24 and the December solstice is December 20-23, according to In 2025, they occur on March 20, June 20, Sept. 22 and Dec. 21, respectively.

The intriguing phenomena we can see in the skies this week
The intriguing phenomena we can see in the skies this week

Yahoo

time4 hours ago

  • Yahoo

The intriguing phenomena we can see in the skies this week

The summer evenings offer us the opportunity to sight some rather intriguing and beguiling phenomena. Noctilucent clouds, (NLCs), make for an interesting spectacle after sunset, observable with the naked eye and quite eerie in appearance. Around two hours after the Sun has set and looking above the northwest horizon, watch for wispy threads of cloud with a distinct blue and silver tinge to them. Taken from the Latin for 'night-shining', NLCs are formed by sunlight reflecting off high-altitude ice crystals that are positioned right on the edge of space. The time period after sunset is crucial if we are to catch NLCs, as around 90 minutes to two hours after the Sun has dipped below the horizon is when the necessary angle occurs for sunlight to catch the crystals and illuminate that part of the sky with this enchanting effect. The beautiful and captivating sight sees the highest clouds in our atmosphere, about 50 miles above the Earth's surface, seem to glow and shimmer with this mesmerizing blue or silvery guise. In the summertime the mesosphere, (the third layer of the Earth's atmosphere where meteorites burn up), becomes cold enough to allow ice to form on suspended dust particles that are floating around in the clouds. These particles may originate from meteorites falling from space, but equally so from other sources, possible volcanic, with the recent Mount Etna eruption billowing tons of debris into the atmosphere. In fact, the first NLCs observations were recorded in 1885, two years after the eruption of Krakatoa, which may or may not have something to do with their appearance. Eruptions aside, rockets that have blasted off from Earth leave particle emissions from their exhaust systems, all contributing to the array of debris circulating in our atmosphere. NLC's have been given a different name when seen from space looking back on Earth; polar mesospheric clouds, or (PMCs). However, the Earth is not the only place NLC's have been witnessed. Launched in June 2003, Mars Express was not only the first European mission to Mars, but the first planetary mission operated entirely by Europe. There were reports of NLC's made three years into the Mars Express mission in 2006, with NASA's Curiosity Mars rover confirming the presence of NLC's in 2019. Readers may well recall all the media hype over Asteroid 2024 YR4, which earlier this year was once considered the highest impact risk to Earth ever recorded. Earlier this week, NASA announced that previously collected data on the asteroid that has been reanalysed now reveals that the 174 to 220 feet-long chunk of rock is more likely to hit the Moon in 2032. During the week ahead, watch for Mars in the evening sky as it moves its way slowly night by night, left to right, above the bright star Regulus in the constellation of Leo, the Lion, situated above the western horizon. The International Space Station continues its early summer break and cannot be seen across our region at present. Send your astrophotography pictures to: thenightsky@

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store