Alcohol-soaked star system could help explain 'why life, including us, was able to form'
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Researchers have found alcohol in the orbit of a young star, and it could help them understand the origins of life on Earth.
Methanol (methyl alcohol) and its isotopes (versions of elements) were detected in gases around a star called HD 100453, which is about 330 light-years from Earth. This is the first time researchers have found isotopes of methanol in the disk of a young star like HD 100453, the scientists reported in a study published June 5 in The Astrophysical Journal Letters.
Methanol is a building block for organic compounds such as amino acids, which are needed for life. Researchers had previously detected methanol — but not its far rarer isotopes — in other star-forming disks.
"Finding these isotopes of methanol gives essential insight into the history of ingredients necessary to build life here on Earth," study lead author Alice Booth, a research fellow at the Harvard and Smithsonian Center for Astrophysics, said in a statement.
Related: A hidden 'super-Earth' exoplanet is dipping in and out of its habitable zone
Many young stars are surrounded by swirling disks of gas and dust. These protoplanetary disks, also known as planet-forming disks, provide the material for planets, moons and comets to form.
The team made the methanol discovery using data from the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. ALMA maps the chemical composition and distribution of gas in nearby (relatively speaking) protoplanetary disks.
RELATED STORIES
—See a young star potentially giving birth to a giant planet in new image from Very Large Telescope
—James Webb telescope spots 'groundbreaking' molecule in scorching clouds of giant 'hell planet'
—Ginormous planet discovered around tiny red star challenges our understanding of solar systems
HD 100453 is larger than the sun, with about 1.6 times the sun's mass. This means that methanol and other molecules in its disk exist as a gas farther from their home star than would have been the case when our solar system was young. Smaller stars have cooler disks, so their molecules are normally frozen as ice and undetectable to ALMA, according to the statement.
In HD 100453's disk, the researchers found that the ratio of methanol to other organic molecules was similar to that of comets in our solar system. The findings suggest that ices within protoplanetary disks eventually clump together to form comets loaded with complex organic molecules, which may then be delivered to planets through collisions.
"This research supports the idea that comets may have played a big role in delivering important organic material to the Earth billions of years ago," study co-author Milou Temmink, a doctoral candidate who studies protoplanetary disks at Leiden University in the Netherlands, said in the statement. "They may be the reason why life, including us, was able to form here."
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Geek Wire
2 hours ago
- Geek Wire
University of Washington celebrates Rubin Observatory's debut — and looks ahead
University of Washington astronomer Zeljko Ivezic talks about the Rubin Observatory — a project in which he played a leading role — with an image of the facility displayed behind him. (GeekWire Photo / Alan Boyle) It's been more than two decades since the University of Washington helped kick off the effort to get the Vera C. Rubin Observatory built in Chile — and now that it's finished, UW astronomers are gearing up to get in on the first decade of discoveries. The university's role in the past, present and future of the Rubin Observatory and its 10-year Legacy Survey of Space and Time, or LSST, literally took center stage in front of a packed house at UW's Kane Hall on Thursday night. UW astronomer Zeljko Ivezic, who served as director of Rubin construction and is shifting his focus to his role as head of science operations for LSST, recalled the night of April 15, when Rubin's first test images came in for fine tuning. 'We were all so happy, and we are still happy,' he said. 'We had been dreaming about this night for two decades, and it finally arrived. And not only that, we quickly obtained beautiful data, but also we continued to do so, and every new image was better and better. The observatory is performing beyond all our expectations.' Ivezic showed off the images of swirling galaxies and colorful nebulas that he first unveiled earlier in the week at a ceremony in Washington, D.C. And he talked up an online tool called Skyviewer that allows users to click around the observatory's 3,200-megapixel images and zoom in on details. 'It's an easy-to-use app,' he told the audience. 'When you go home tonight, then you can spend the next few hours just going around. Turn off the light in your room and then look at your screen, and it will be fantastic.' University of Washington Zeljko Ivezic shows off his Rubin Observatory necktie and matching nail polish. The tie is on sale via the Startorialist website. (GeekWire Photo / Alan Boyle) The University of Washington's involvement in the Rubin Observatory goes back to the early 2000s, when astronomers began considering how a next-generation sky survey might be accomplished. In its early years, the project was known as the Large Synoptic Survey Telescope (which set the precedent for the LSST acronym). UW was one of four founding partners of the LSST Corporation, an entity that was set up to get the project started. (That nonprofit group, which was subsequently renamed the LSST Discovery Alliance, now has 40 member institutions.) In 2008, the project got a huge boost from Microsoft billionaires Bill Gates and Charles Simonyi — who donated $10 million and $20 million, respectively, to support early work on the telescope's 8.4-meter-wide (28-foot-wide) mirror. As the years went on, support for the project grew, fueled by a high rating in the National Research Council's 2010 Decadal Survey. Eventually, the National Science Foundation and the U.S. Department of Energy's Office of Science allocated hundreds of millions of dollars for building the observatory in Chile, where dry air and dark skies made for optimal viewing conditions. In 2019, the observatory was officially named in honor of astronomer Vera Rubin, who analyzed galactic rotation rates to nail down the first convincing evidence for the existence of dark matter. The survey telescope, meanwhile, was named after Simonyi's family in recognition of his early gift. Today, UW's Rubin Observatory team consists of about 75 faculty members and graduate students, plus scores of undergraduates. University of Washington astronomer Mario Juric, the team's principal investigator, noted that UW played an essential role in getting the observatory up and running. 'None of this would be possible without the Rubin team right here at UW,' he told Thursday night's audience. Members of the University of Washington's team for the Rubin Observatory's Legacy Survey of Space and Time pose for a group picture after a presentation at UW's Kane Hall. (GeekWire Photo / Alan Boyle) That essential role will continue into the next decade. In partnership with Princeton University, UW's team is responsible for the software that processes the trillions of bytes of image data that are generated by the observatory on a nightly basis. That work meshes with the leading roles in Rubin operations that are performed by the National Science Foundation's NOIRLab and the Department of Energy's SLAC National Accelerator Laboratory. 'We're here to figure out how to build algorithms to get the most out of data, how to make the software work as well as it can,' Juric told GeekWire. Andrew Connolly, another UW astronomer who is the director of the university's eScience Institute, said the university's researchers are relying on machine learning and other artificial intelligence strategies 'to accelerate our discoveries.' 'We build AI that allows us to study the variability in time series data. We build new tools at U Dub to search for the signatures of a distant planet in the outskirts of our solar system,' he said. 'We even use AI to improve the image quality and the sharpness of the images that you see.' Astronomers expect the data from Rubin to reveal millions of previously undetected asteroids in our own solar system, shed light on the mysteries of dark matter and dark energy, track phenomena including gamma-ray bursts and supernovas, and capture images of billions of galaxies repeatedly over the coming decade. James Davenport — who is the newly named director of the university's DiRAC Institute, taking a handoff from Juric — said it's going to be an exciting 10 years. 'We are going to discover things we don't expect,' he said.
Yahoo
8 hours ago
- Yahoo
Astronomers discover baby planets taking their 1st steps in nearby stellar nursery (images)
When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers may have caught the first stages of planets being born around infant stars. The discovery came about when a team of scientists studied 78 planet-forming, flattened clouds of gas and dust, or "protoplanetary disks," in the Ophiuchus star-forming region. This stellar nursery, also known as the Rho Ophiuchi cloud complex, is located around 460 light-years from Earth, making it the closest star-forming region to our solar system. The team discovered previously unseen rings, spirals and other substructures in the swirling, plate-like planet-forming clouds around a number of stars just a few hundred thousand years old. If that seems ancient, consider this: Our middle-aged star, the sun, is 4.6 billion years old. The team's findings suggest stars and planets evolve together in environments that are rich in gas and dust. Stars are born when overly dense regions in vast clouds of gas and dust called molecular clouds collapse under their own gravity. This collapse creates a protostar wrapped in a pre-natal envelope of material from which it continues to gather mass. This matter-harvesting continues until the star is sufficiently massive enough to trigger the fusion of hydrogen to helium at the heart of the star, the nuclear process that defines what a fully grown or main-sequence star end result is a young star surrounded by a flattened disk of gas and dust within which planets can begin to form. When planets begin to take shape in these disks, their gravitational influence can gather or eject materials. That process gives rise to substructures in the protoplanetary disk. However, the big question is: At what point in the evolution of planetary systems do these substructures begin to appear? That's a question astronomers have been attempting to answer using the Atacama Large Millimeter/submillimeter Array (ALMA), an array of 66 antennas in northern Chile that work together to act as form a single telescope. In particular, two large programs conducted by ALMA, DSHARP and eDisk, have discovered intricate details of structures in protoplanetary disks. DSHARP found that such structures are common in the disks that surround 20 young stars under 1 million years of age. Meanwhile, eDisk studied younger protostars that are just between 10,000 and 100,000 years old and thus still in their matter-harvesting stage. This revealed that structures present around 1 million-year-old stars are absent around stars 10 and 100 times younger. That implies the characteristics of a protoplanetary disk are dependent on the age of its central star. The new study's team looked at stars with ages between those studied in the DSHARP and eDisk programs, turning to super-resolution imaging provided by public software called "Python module for Radio Interferometry Imaging with Sparse Modeling," or (PRIISM), and applied this to ALMA archival data. This allowed the researchers to obtain a resolution three times greater than what's provided by standard procedures for half of the imaged protoplanetary disks. The team's results were further bolstered by the fact their Ophiuchus sample was four times larger than what was used in the DSHARP and eDisk programs. The investigation revealed 27 of the 78 examined disks had ring or spiral structures, 15 of which had never been seen before. This revealed substructures form in disks that have widths 30 times the distance between Earth and the sun (30 astronomical units). This, in turn, implies that substructures form much earlier than previously thought — while such disks are still abundant with gas and dust. In other words, infant stars and planets seem to evolve together — at least, in the Ophiuchus stellar nursery. Related Stories: —The deadly atmosphere on Venus could help us find habitable worlds. Here's how. — Could nearby stars have habitable exoplanets? NASA's Chandra X-ray Observatory hopes to find out — Astronomers discover origins of mysterious double hot Jupiter exoplanets: 'It is a dance of sorts' "These findings, bridging the gap between the eDisk and DSHARP projects, were enabled by the innovative imaging that allows for both achieving high resolution and a large number of samples," Ayumu Shoshi, team leader and a researcher at Kyushu University, said in a statement. "While these findings only pertain to the disks in Ophiuchus, future studies of other star-forming regions will reveal whether this tendency is universal." The team's research was published in The Publications of the Astronomical Society of Japan


New York Post
2 days ago
- New York Post
Astronomers make groundbreaking discovery about largest comet ever observed flying through deep space
A groundbreaking discovery was recently made about the largest comet ever observed hurtling toward the sun from the Oort Cloud in the outer reaches of our solar system. Astronomers recently got a close-up look at the comet, known as C/2014 UN271, flying through deep space with the powerful Atacama Large Millimeter/submillimeter Array (ALMA) radio telescope in Chile. The icy giant is 85 miles across and is more than 10 times the size of any known comet, according to the National Radio Astronomy Observatory (NRAO). The NRAO reported that astronomers found that new observations from the comet showed jets of carbon monoxide gas erupting out from the comet's solid icy core. Using the ALMA, the researchers found the comet in deep space near Neptune or about 17 times the distance between the Sun and Earth, according to a release from NRAO. Using the ALMA telescope's high sensitivity and resolution, the researchers were able to focus on the carbon monoxide and heat being emitted from the comet. Nathan Roth of American University and NASA Goddard Space Flight Center, the lead author of the study, which was published in the Astrophysical Journal Letters, discussed how this gives researchers insight into the workings of this frozen rock hurtling through space. 4 Astronomers discovered jets of carbon monoxide gas erupting out from the comet's solid icy core. NRAO/Melissa Weiss 4 The comet was spotted in deep space near Neptune. NASA Goddard 'These measurements give us a look at how this enormous, icy world works,' Roth said. 'We're seeing explosive outgassing patterns that raise new questions about how this comet will evolve as it continues its journey toward the inner solar system.' Using previous ALMA observations and these newest findings, researchers were able to measure the comet. They measured the thermal signal to find the comet's size and amount of dust surrounding its core. 4 Scientists hope the new data will give them a better understanding of the makeup of the solar system. AP 4 Researchers used the ALMA telescope to track the carbon monoxide and heat being emitted from the comet. Diogo Josí© – Researchers believe that as C/2014 UN271 gets closer to the sun, they will see more frozen gas begin to vaporize off the titan of a comet. This could possibly give researchers more information about the primitive makeup of this icy giant. The researchers also hope that this will give a better understanding of the makeup of the solar system.