logo
Scientists find universe's missing matter while watching fast radio bursts shine through 'cosmic fog'

Scientists find universe's missing matter while watching fast radio bursts shine through 'cosmic fog'

Yahoo16 hours ago

When you buy through links on our articles, Future and its syndication partners may earn a commission.
Half of the universe's ordinary matter was missing — until now.
Astronomers have used mysterious but powerful explosions of energy called fast radio bursts (FRBs) to detect the universe's missing "normal" matter for the first time.
This previously missing stuff isn't dark matter, the mysterious substance that accounts for around 85% of the material universe but remains invisible because it doesn't interact with light. Instead, it is ordinary matter made out of atoms (composed of baryons) that does interact with light but has until now just been too dark to see.
Though this puzzle might not quite get as much attention as the dark matter conundrum — at least we knew what this missing matter is, while the nature of dark matter is unknown — but its AWOL status has been a frustrating problem in cosmology nonetheless. The missing baryonic matter problem has persisted because it is spread incredibly thinly through halos that surround galaxies and in diffuse clouds that drift in the space between galaxies.
Now, a team of astronomers discovered and accounted for this missing everyday matter by using FRBs to illuminate wispy structures lying between us and the distant sources of these brief but powerful bursts of radio waves.
"The FRBs shine through the fog of the intergalactic medium, and by precisely measuring how the light slows down, we can weigh that fog, even when it's too faint to see," study team leader Liam Connor, a researcher at the Center for Astrophysics, Harvard & Smithsonian (CfA), said in a statement.
FRBs are pulses of radio waves that often last for mere milliseconds, but in this brief time they can emit as much energy as the sun radiates in 30 years. Their origins remain something of a mystery. That's because the short duration of these flashes and the fact that most occur only once make them notoriously hard to trace back to their source.
Yet for some time, their potential to help "weigh" the matter between galaxies has been evident to astronomers. Though thousands of FRBs have been discovered, not all were suitable for this purpose. That's because, to act as a gauge of the matter between the FRB and Earth, the energy burst has to have a localized point of origin with a known distance from our planet. Thus far, astronomers have only managed to perform this localization for about 100 FRBs.
Connor and colleagues, including California Institute of Technology (Caltech) assistant professor Vikram Ravi, utilized 69 FRBs from sources at distances of between 11.7 million to about 9.1 billion light-years away. The FRB from this maximum distance, FRB 20230521B, is the most distant FRB source ever discovered.
Of the 69 FRBs used by the team, 39 were discovered by a network of 110 radio telescopes located at Caltech's Owen Valley Radio Observatory (OVRO) called the Deep Synoptic Array (DSA). The DSA was built with the specific mission of spotting and localizing FRBs to their home galaxies.
Once this had been done, instruments at Hawaii's W. M. Keck Observatory and at the Palomar Observatory near San Diego were used the measure the distance between Earth and these FRB-source galaxies.
Many of the remaining FRBs were discovered by the Australian Square Kilometre Array Pathfinder (ASKAP), a network of radio telescopes in Western Australia that has excelled in the detection and localization of FRBs since it began operations.
As FRBs pass through matter, the light that comprises them is split into different wavelengths. This is just like what happens when sunlight passes through a prism and creates a rainbow diffraction pattern.
The angle of the separation of these different wavelengths can be used to determine how much matter lies in the clouds or structures that the FRBs pass through.
"It's like we're seeing the shadow of all the baryons, with FRBs as the backlight," Ravi explained. "If you see a person in front of you, you can find out a lot about them. But if you just see their shadow, you still know that they're there and roughly how big they are."
The team's results allowed them to determine that approximately 76% of the universe's normal matter lurks in the space between galaxies, known as the intergalactic medium. They found a further 15% is locked up in the vast diffuse haloes around galaxies. The remaining 9% seems to be concentrated within the galaxies, taking the form of stars and cold galactic gas.
The distribution calculated by the team is in agreement with predictions delivered by advanced simulations of the universe and its evolution, but it represents the first observational evidence of this.
Related Stories:
— What are fast radio bursts?
— Mysterious fast radio burst traced back to massive 'cosmic graveyard' of ancient stars
— Mysterious fast radio bursts could be caused by asteroids slamming into dead stars
The team's results could lead to a better understanding of how galaxies grow. For Ravi, however, this is just the first step toward FRBs becoming a vital tool in cosmology, aiding our understanding of the universe.
The next step in this development may well be Caltech's planned radio telescope, DSA-2000. This radio array, set to be constructed in the Nevada desert, could spot and localize as many as 10,000 FRBs every year.
This should both boost our understanding of these powerful blasts of radio waves and increase their usefulness as probes of the universe's baryonic matter content.
The team's research was published on Monday (June 16) in the journal Nature Astronomy.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Interactive map of the early universe is considered largest ever created
Interactive map of the early universe is considered largest ever created

Yahoo

time5 hours ago

  • Yahoo

Interactive map of the early universe is considered largest ever created

A team of astronomers have put together the largest, most detailed map of the universe ever created – and you can explore it now. The interactive online map, created using data from NASA's James Webb Space Telescope, details some 800,000 galaxies across a vast cosmic distance – which in astronomy amounts to peering back in time. In fact, some of the galaxies are so far away, they appear as they existed not long after the Big Bang. Depicting a section of the universe known as the COSMOS-Web field, the new map is far more expansive than even the iconic Hubble Ultra Deep Field, a view of 10,000 galaxies NASA released in 2004. Spanning nearly all of cosmic time, the new map has the potential to challenge existing notions of the infant universe, the astronomers who created it claimed in a press release. The best part? The interactive map is available for the public to use. A team of international scientists who are part of the Cosmic Evolution Survey program (COSMOS) created and released the map of the universe Thursday, June 5. Compiled from more than 10,000 images of COSMOS-Web – the largest observing program of James Webb Space Telescope's first year in orbit – the map covers about three times as much space as the moon takes up when viewed from Earth. That makes it the largest contiguous image available from Webb, according to the Rochester Institute of Technology, whose Jeyhan Kartaltepe is a lead researcher on the project. An intricate astral tapestry, the map gives stargazers digital views of the ancient cosmos in unprecedented detail and breadth. Scrolling and zooming in can take users some 13.5 billion years back in time when the universe was in its infancy and stars, galaxies and black holes were still forming. 'If you had a printout of the Hubble Ultra Deep Field on a standard piece of paper, our image would be slightly larger than a 13-foot by 13-foot-wide mural, at the same depth," Caitlin Casey, a physicist at the University of California, Santa Barbara and co-lead for the COSMOS project, said in a statement. "It's really strikingly large.' Explore the interactive map . Using its powerful resolution and infrared capabilities, the James Webb Space Telescope observed a region of space known as the COSMOS-web field, which scientists have been surveying for years. The raw data from the COSMOS field observations was made publicly available once it was collected by Webb, but that didn't mean it was easily accessible. That's why the COSMOS project spent two years creating the map from Webb's raw data to make it more digestible for amateur astronomers, researchers and even the general public. "In releasing the data to the public, the hope is that other astronomers from all over the world will use it to, among other things, further refine our understanding of how the early universe was populated and how everything evolved to the present day," according to a statement from UC Santa Barbara. The James Webb Space Telescope, which launched in 2021, far surpasses the abilities of the Hubble Space Telescope, launched 35 years ago in 1990. Orbiting the sun rather than Earth, the Webb is outfitted with a gold-coated mirror and powerful infrared instruments to observe the cosmos like no instrument before. Since reaching the cosmos, Webb has not only facilitated countless scientific breakthroughs in astrophysics, but it also has produced gorgeous images of planets and other celestial objects, including star-forming regions. In March, NASA also deployed into orbit its SPHEREx telescope to collect data on more than 450 million galaxies. Scientists say the SPHEREx observatory will be able to get a wider view of the galaxy – identifying objects of scientific interest that telescopes like Hubble and Webb can then study up close. SPHEREx became operational in May, constantly snapping images of the cosmos. Eric Lagatta is the Space Connect reporter for the USA TODAY Network. Reach him at elagatta@ This article originally appeared on USA TODAY: Astronomers release largest interactive map of universe: Check it out

There's Suddenly A 40% Chance ‘Planet Nine' Exists — What To Know
There's Suddenly A 40% Chance ‘Planet Nine' Exists — What To Know

Forbes

time6 hours ago

  • Forbes

There's Suddenly A 40% Chance ‘Planet Nine' Exists — What To Know

After studying thousands of computer simulations of the solar system, researchers at Rice University and the Planetary Science Institute think there's a 40% chance an elusive 'Planet Nine' or 'Planet X' might exist in the outer solar system. It's the latest hint that there may be an undiscovered world beyond the orbit of Neptune and dwarf planet Pluto. The new study published in Nature Astronomy reveals that 'wide-orbit' planets — those that orbit the sun from at least 100 times farther than Earth orbits the sun — may be a natural consequence of how planets form. According to NASA, planets form from the giant, donut-shaped region of gas and dust that surrounds young stars, known as a protoplanetary disk. As planets jostle for space, the chaos can cause some to be flung into much wider orbits. The research increases the likelihood that Planet X or Planet Nine, hypothetical planets that may or may not exist in the outer solar system, actually exist. 'Essentially, we're watching pinballs in a cosmic arcade,' said André Izidoro, lead author of the study and assistant professor of Earth, environmental and planetary sciences at Rice University. 'When giant planets scatter each other through gravitational interactions, some are flung far away from their star.' If the timing and surrounding environment are just right, those planets don't get ejected but are trapped in extremely wide orbits — which could have happened in the solar system as Uranus and Neptune grew or the later scattering among gas giants. 'There is up to a 40% chance that a Planet Nine-like object could have been trapped during that time,' said Izidoro. 'We're not just increasing the odds of finding Planet Nine — we're opening a new window into the architecture and evolution of planetary systems throughout the galaxy.' Various objects have been discovered beyond Neptune in highly elongated yet remarkably similarly oriented orbits, as if the gravitational influence of a planet midway between Earth and Neptune, in mass, has herded them. If it exists, it's in the Kuiper Belt, a region of the solar system beyond Neptune that's home to Pluto, other dwarf planets and comets. In May, scientists in Taiwan, searching for a ninth planet, found hints of something in archival images taken by long-dead infrared telescopes. It's hoped that the Vera C. Rubin Observatory — which will use the world's most powerful camera to survey the sky starting later in 2025 — will either find or rule out Planet Nine. In 2006, the International Astronomical Union reclassified Pluto's status from a planet to a 'plutoid,' which was later changed to a dwarf planet. It's become fashionable to deny this, maintaining that the solar system must still have nine planets. However, Pluto's status was changed for a good reason. In 2003, an object farther out in the Kuiper Belt than Pluto was discovered. It became known as Eris, and crucially, it's almost the same size as Pluto. Those who still maintain there are nine planets in the solar system are, therefore, wrong — if you keep Pluto, you must also have Eris. With three slightly smaller Pluto-like objects also found — Makemake, Haumea and Sedna — it's easy to see why the IAU decided to re-classify Pluto rather than admit a possibly ever-increasing roster of new objects to planet-status. Further reading

Scientists Discover the Key to Axolotls' Ability to Regenerate Limbs
Scientists Discover the Key to Axolotls' Ability to Regenerate Limbs

WIRED

time7 hours ago

  • WIRED

Scientists Discover the Key to Axolotls' Ability to Regenerate Limbs

Jun 17, 2025 5:00 AM A new study reveals the key lies not in the production of a regrowth molecule, but in that molecule's controlled destruction. The discovery could inspire future regenerative medicine. Axolotls in Professor James Monaghan's laboratory. Photograph: Alyssa Stone/Northeastern University The axolotl seems like something out of science fiction. This perpetually youthful-looking Mexican salamander possesses a superpower that defies biology as we know it: the ability to regenerate entire limbs, parts of its heart, and even its spinal cord. But how does an amputated limb know whether to regenerate an entire arm from the shoulder down or just a hand from the wrist? This mystery of 'positional identity' has fascinated scientists for decades. A team at Northeastern University, led by James Monaghan, has unraveled a key piece of this biological puzzle. In a study published in Nature Communications, the researchers reveal an elegant molecular mechanism that acts like a GPS coordinate system for regenerating cells. Surprisingly, the secret lies not in producing more of a chemical signal, but in how quickly it is destroyed. Monaghan's lab houses about 500 axolotls cared for by a team ranging from undergraduate students to postdocs. 'Raising axolotls involves managing a complex aquatic system and being patient, as they reach sexual maturity within a year. It's slower than with other model organisms, but also more exciting. In many experiments, the team is exploring completely new terrain,' Monaghan says. For more than two decades, Monaghan's lab has been studying the axolotl to understand how it regenerates complex organs such as its limbs, spinal cord, heart, and tail. His lab's research focuses on uncovering why nerves are essential to this process and what unique cellular properties allow axolotls to regenerate tissues that other animals cannot. These findings could transform our understanding of bodily regeneration and have important applications in regenerative medicine. James Monaghan at work in the lab. Photograph: Alyssa Stone/Northeastern University 'For years we've known that retinoic acid, a derivative of vitamin A, is a crucial molecule that screams to cells 'build a shoulder!'' explains Monaghan. 'But the puzzle was how the cells in the regenerating limb-stump controlled their levels so precisely to know exactly where they were on the axis from shoulder to hand.' To unpick this mystery, the team focused on a cluster of stem cells that form at the wound site after a limb is lost in animals like the axolotl that are capable of regeneration. Known as the blastema, it's this base of stem cells that then orchestrates regeneration. The prevailing theory was that differences in retinoic acid production might explain why a shoulder (proximal) amputation leads to an entire limb being regenerated, while a wrist (distal) amputation only regenerates the hand. 'Our big surprise was to discover that the key was not in how much retinoic acid was produced, but in how it was degraded,' says Monaghan. The team discovered that cells in the distal part of the limb, the wrist, are awash in an enzyme called CYP26B1, whose sole function is to destroy retinoic acid. In contrast, cells in the shoulder have hardly any of this enzyme, allowing retinoic acid to accumulate to high levels. This difference creates a chemical gradient along the limb: lots of retinoic acid in the shoulder, little in the wrist. It is this gradient that informs cells of their exact location. In humans, this pathway of cellular plasticity is absent or closed. 'Therefore, the great challenge is to understand how to induce this blastemal state in our cells, a key transient structure in regeneration. If achieved, it would be possible for our cells to respond again to positional and regenerative signals, as they do in the axolotl,' explains the researcher. Tricking the Cells Into Over-Regenerating To confirm their discovery, the researchers conducted an experiment. They amputated axolotl legs at the wrist and administered a drug called talarozole, which inhibits the CYP26B1 enzyme. By 'turning off the brakes,' retinoic acid accumulated to extremely high levels in a place where it normally shouldn't. As a result the wrist cells, 'confused' by the high concentration of retinoic acid, interpreted position as being the shoulder. Instead of regenerating a hand, they proceeded to regenerate a complete, duplicated limb. 'It was the ultimate test,' Monaghan says. Different limb regenerations of axolotls treated with talarozole. Photograph: Alyssa Stone/Northeastern University The team went a step further to identify which genes were activated by these high levels of retinoic acid. They discovered a master gene that was specifically activated in shoulder areas: Shox . An abbreviation of 'short stature homeobox gene,' Shox is so called because mutations to it in humans cause short stature. 'We identified Shox as a critical instruction manual in this process,' Monaghan explains. 'It's the gene that tells developing cells to 'build the arm and forearm bones.'' To confirm this, the team used Crispr gene-editing technology to knock out the Shox gene in axolotl embryos. The resulting animals had peculiar limbs: normal-sized hands and fingers, but significantly shorter and underdeveloped arms and forearms. This demonstrated that Shox is essential for shaping proximal, but not distal, structures, revealing that regeneration uses distinct genetic programs for each limb segment. This study not only solves a long-standing mystery of regenerative biology, but also provides a molecular road map. By understanding how the axolotl reads and executes its genetic instructions for regeneration, scientists can begin to think about how, someday, we might learn to write our own genetic instructions. An axolotl. Photograph: Alyssa Stone/Northeastern University 'The axolotl has cellular properties that we want to understand at the deepest level,' says Monaghan. 'While regeneration of a complete human limb is still in the realm of science fiction, each time we discover a piece of this genetic blueprint, such as the role of CYP26B1 and Shox , we move one step closer to understanding how to orchestrate complex tissue repair in humans.' To bring this science closer to clinical applications, one crucial step is to succeed in inducing blastema formations of stem cells at sites of amputation in humans. 'This is the 'holy grail' of regenerative biology. Understanding the minimal components that make it up—the molecular signals, the cellular environment, the physiological conditions—would allow us to transform a scar into a regenerative tissue,' explains Monaghan. In his current research, there are still gaps to be filled: how the CYP26B1 gradient is regulated, how retinoic acid connects to the Shox gene, and what downstream factors determine the formation of specific structures, such as the humerus or radius bones. From Healing to Regeneration Monaghan explains that axolotls do not possess a 'magic gene' for regeneration, but share the same fundamental genes as humans. 'The key difference lies in the accessibility of those genes. While an injury in humans activates genes that induce scarring, in salamanders there is cell de-differentiation : the cells return to an embryonic-like state, where they can respond to signals such as retinoic acid. This ability to return to a 'developmental state' is the basis of their regeneration,' explains the researcher. So, if humans have the same genes, why can't we regenerate? 'The difference is that the salamander can reaccess that [developmental] program after injury.' Humans cannot—they only access this development pathway during initial growth before birth. 'We've had selective pressure to shut down and heal,' Monaghan says. 'My dream, and the community's dream, is to understand how to make the transition from scar to blastema.' James Monaghan. Photograph: Alyssa Stone/Northeastern University Monaghan says that, in theory, it would not be necessary to modify human DNA to induce regeneration, but to intervene at the right time and place in the body with regulatory molecules. For example, the molecular pathways that signal a cell to be located in the elbow on the pinky side—and not the thumb—could be reactivated in a regenerative environment using technologies such as Crispr. 'This understanding could be applied in stem cell therapies. Currently, laboratory-grown stem cells do not know 'where they are' when they are transplanted. If they can be programmed with precise positional signals, they could integrate properly into damaged tissues and contribute to structural regeneration, such as forming a complete humerus,' says the researcher. After years of work, understanding the role of retinoic acid—studied since 1981—is a source of deep satisfaction for Monaghan. The scientist imagines a future where a patch placed on a wound can reactivate developmental programs in human cells, emulating the regenerative mechanism of the salamander. Although not immediate, he believes that cell engineering to induce regeneration is a goal already within the reach of science. He reflects on how the axolotl has had a second scientific life. 'It was a dominant model a hundred years ago, then fell into disuse for decades, and has now reemerged thanks to modern tools such as gene editing and cell analysis. The team can study any gene and cell during the regenerative process. In addition, the axolotl has become a cultural icon of tenderness and rarity.' This story originally appeared on WIRED en Español and has been translated from Spanish.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store