logo
Some Glaciers Will Vanish No Matter What, Study Finds

Some Glaciers Will Vanish No Matter What, Study Finds

New York Times29-05-2025

There's news about glaciers, and it's grim.
Regardless of climate mitigation strategies, the world's glaciers are on track to shrink significantly over hundreds of years, according to new study published on Thursday. They're locked in to losing ice.
Even if global temperatures stayed where they are today for the next thousand years, essentially an impossibility, glaciers outside of ice sheets would lose roughly one-third of their mass, researchers estimated.
But there's still hope to avoid the most severe losses, the assessment said. Limiting warming to 1.5 degrees Celsius, or 2.7 degrees Fahrenheit, above the preindustrial average could save about twice as much ice in a millennium than if the planet warmed by 2.7 degrees Celsius, the trajectory the world is currently on for 2100, according to the study.
'Every tenth of a degree less of warming will help preserve glacial ice,' said Lilian Schuster, a glacial modeler at the University of Innsbruck in Austria who helped lead the research, which was published in the journal Science. 'With ambitious climate measures, we can save a lot of ice.'
The massive ice sheets that cover Antarctica and Greenland get a lot of attention in the climate change discussion; if they melted, sea levels would rise more than 200 feet, flooding coastal cities around the world.
But glaciers found in mountains and near the margins of ice sheets play a small but significant role in the climate change story, too. They make up less than half of 1 percent of the world's ice and, if they melt, they would contribute about a foot to global sea level rise.
As glaciers melt, they can also increase the risk of deadly floods and landslides. A glacial collapse in Switzerland this week destroyed most of an Alpine village. And if glaciers shrink enough, communities can lose crucial sources of freshwater for drinking, irrigation and hydropower.
Glaciers are melting much more rapidly than ice sheets in response to global warming, in part because they are smaller.
'Glaciers are really symbolic of climate change,' said Harry Zekollari, a glaciologist at the Vrije Universiteit Brussel, a Belgian research university, who contributed to the new study.
Glacier retreat has captured much attention in recent years, but the losses so far appear to be only a harbinger of bigger problems to come.
Using eight different glacial models and excluding ice sheets, the researchers analyzed how more than 200,000 of the world's glaciers would respond to 80 different climate scenarios, over thousands of years, in which the planet reached a certain temperature and then stopped warming. The models showed the researchers how long it would take these glaciers to stabilize, or stop changing in response to the initial climate warming.
Even if warming stops at 1.2 degrees Celsius above preindustrial levels, the average warming over roughly the last decade, glaciers are on track to lose significant volumes of ice within a millennium, the study found. The median ice loss was about 40 percent, which would add about 10 centimeters to sea level rise.
Because the planet has already warmed at least 1.2 degrees Celsius, that ice loss and its resulting sea level rise are unavoidable.
Bigger and flatter glaciers with more ice respond more slowly to climate change, taking hundreds, if not thousands, of years to stabilize after a temperature shift, the study found. But most climate models stop at 2100.
'We project the loss for the rest of the century, but we don't really know what happens next,' said Romain Hugonnet, an Earth scientist at the University of Alaska Fairbanks who uses remote sensing to study glacier change and was not involved in the study. 'It's really important to look at it this way.'
If warming instead stopped at 1.5 degrees Celsius, the median estimate suggests that glacial ice loss would creep up to nearly half the current global mass. And at 2.7 degrees Celsius, the Climate Action Tracker estimate for 2100 based on current climate pledges, the median value for glaciers' ice loss would be about 75 percent of their mass.
'A large chunk of these glaciers are going to be lost regardless of what we do,' said Mauri Pelto, a glaciologist at Nichols College in Dudley, Mass., who was not involved in the new study. Still, policies around mitigating climate change and reducing emissions can help avoid the most severe ice-loss scenarios and save the larger glaciers, both he and the study authors stressed.
'We have time to alter the climate,' Dr. Pelto said. 'We have time to preserve those glaciers.'
Scientists are also exploring 'overshooting' warming thresholds, where the world warms beyond a given temperature and then cools down again. Another study by Dr. Schuster, published in the journal Nature this month, found that overshooting to 3 degrees Celsius of warming and then returning to 1.5 degrees Celsius would cause about 11 percent more glacial ice to be lost by 2500, in addition to the unavoidable ice loss.
The results were about what was expected but still alarming, Dr. Hugonnet said. Having multiple models from multiple teams around the world home in on the same outcomes, even with somewhat wide ranges, made the results more robust.
'There's probably more work to be done to see which models perform the best,' Dr. Hugonnet said. 'But we know there will be a substantial loss pretty confidently.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

What if your house changed color with the seasons?
What if your house changed color with the seasons?

CNN

time4 hours ago

  • CNN

What if your house changed color with the seasons?

When Joe Doucet bought a new house in Katonah, New York, he wanted to make it as environmentally friendly as possible. As a designer and inventor, he immediately found himself wondering whether the exterior of his home could play a role in mitigating the effects of climate change. 'One of the things I had not really considered before was: What color should I paint the house?' he told CNN, speaking in a video call. It's well known that light-colored buildings reflect heat and stay cooler while darker ones absorb — just compare chilly Scandinavia's black housing tradition to the whitewashed homes found across warm Mediterranean countries. But what shade would perform best in a climate like New York's, with hot summers but dark and snowy winters? Doucet started by 3D-printing small scale models of his house, complete with similar levels of insulation, and painting them in different colors. Over the course of a year, he found that in winter the inside temperature of the black model was on average 7 degrees Fahrenheit warmer than the white one. In summer, the white model house was 12 degrees Fahrenheit cooler. 'The answer wasn't, 'Should I paint it black or white?' The answer was: It should be black in winter and white in summer,' he said of the findings. 'It is not really feasible to paint a house twice a year. I began to think, 'Surely there are other ways of doing this?'' Doucet's solution was inspired by his childhood interest in mood rings, which feature manmade 'stones' that change appearance according to the wearer's finger temperature. 'I recall a fascination I had with a mood ring I received as a child and really trying to dig in and understand what it was,' he explained. 'I knew, even as 7-year-old, that (the ring's changing color) had nothing to do with my mood, that there was some type of chemistry at play. The chemistry that creates that change is very, very similar to what I used.' The process in question is called a thermochromic response, which refers to how chains of liquid crystals react to atmospheric temperature. In a mood ring, these liquid crystals are contained within the 'gemstone,' causing its color to change. Doucet developed a kind of thermochromic pigment containing the crystals and started experimenting with a tin of ordinary housepaint and different additives. The result was a substance that could change color by absorbing ultra-violet light (which produces heat) above a certain temperature. Despite what he called the 'great success' of his initial trials, Doucet found his new paints would slowly degrade in the sunlight. But after experimenting for another year, the designer solved the issue with the help of a protective additive. His climate-responsive paint, as he dubs it, appears 'very, very dark gray' below 77 degrees Fahrenheit and gradually turns lighter as the temperature rises. Doucet has since filed a patent application for the technology. He admits his invention won't be especially useful for people in consistently hot or cold climates. But Doucet believes his paint could be a 'game changer' for those living in the world's temperate zones — including large parts of North America, Europe and Asia — where average temperatures are typically higher than 50 degrees Fahrenheit in the warmest months but no lower than 26.6 degrees Fahrenheit in the coldest. Last year was the hottest year on record. It was also the first calendar year to breach 1.5 degrees Celsius above pre-industrial levels, a critical climate threshold. Doucet sees his invention as a direct response to this changing climate, rather than innovative new technology: 'This could have been done 70 years ago, there was just no need for it,' he explained. 'Climate change wasn't an issue at the time.' But more than helping homeowners respond to rising temperatures, Doucet's invention could have an impact on their climate pollution amid increasing energy costs and dependence on air conditioning (in 2020, 88% of US households used AC, up from 77% two decades ago). The operation of buildings accounts for 30% of global energy consumption, according to the International Energy Agency. But homes with improved thermal control consume less power by reducing demand for both air conditioning and heating. Doucet's modeling 'conservatively' predicts his paint could help households save between 15% to 30% on their energy costs. Beyond the science, Doucet believes there is beauty in the idea that buildings might shift with the seasons, like the leaves on a tree. 'There's something poetic about seeing the built environment and the built world change with the seasons in the way nature does,' he said. He also notes that new climate-responsive paints need not only change from white to black: 'You can tint this pretty much any color,' he explained. A house could turn light blue in warmer months before turning a darker blue in the wintertime, he offered as an example. So, with his prototype technology developed, how long until people can paint their houses with it? 'Five to 10 years,' said Doucet, caveating that its proliferation will depend on how people react to it. So far, he said, responses have ranged from 'amazing' to 'I don't believe you.' The changing political climate may also impact his product's route to market. President Donald Trump's promise to 'terminate' his predecessor Joe Biden's clean energy policies — which he has called the 'Green New Scam' — has created an uncertain climate for eco-investing. Doucet, who is also involved with an wind energy venture, says the resulting change in how investors respond to green projects has made him reluctant to raise venture capital and go at it alone. Instead, he hopes to find a partner that can bring the invention to market, like a paint company, a chemical company or some combination of both. 'When situations change,' he said, referencing the Trump administration's plans to cut subsidies and tax rebates for clean energy projects, 'you need to change with them.' Nevertheless, Doucet appears confident that his creation has a potentially huge market. Not only could the paint be used on homes, but also larger buildings like schools, factories and other structures requiring a controlled internal environment. Though he is careful not to oversell the impact of his invention. 'There is no single solution to climate change. It's a series of steps and small actions,' he said. 'But this could be a meaningful one.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store