logo
Dark energy is even stranger than we thought, new 3D map of the universe suggests. 'What a time to be alive!' (video)

Dark energy is even stranger than we thought, new 3D map of the universe suggests. 'What a time to be alive!' (video)

Yahoo20-03-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
New results from the Dark Energy Spectroscopic Instrument (DESI) suggest that the unknown force accelerating the expansion of the universe isn't what we believed it to be. This hints that our best theory of the universe's evolution, the standard model of cosmology, could be wrong.
The newly released DESI data comes from its first three years of observations collected as the instrument, mounted on the Nicholas U. Mayall 4-meter Telescope at Kitt Peak National Observatory, continues to build the largest 3D map of the universe ever created. By the time DESI completes its five-year mission next year, the instrument will have measured the light from an estimated 50 million galaxies and black hole-powered quasars, in addition to the starlight of over 10 million stars.
It is the capability of DESI to capture light from 5,000 galaxies simultaneously that makes it the ideal instrument to conduct a survey large enough to investigate the properties of dark energy. This new analysis focuses on data from the first three years of DESI observations, encompassing nearly 15 million of the best-measured galaxies and quasars.
"The universe never ceases to amaze and surprise us," DESI Project Scientist Arjun Dey said in a statement. "By revealing the evolving textures of the fabric of our universe as never before, DESI and the Mayall telescope are changing our very understanding of the future of our universe and nature itself."
Dark energy is the placeholder name given to whatever aspect of the universe is causing the fabric of spacetime to inflate faster and faster, constantly pushing galaxies apart more rapidly.
It is thought to account for around 70% of the universe's matter and energy. The mysterious "stuff" called dark matter makes up another 25%, and ordinary matter comprising stars, planets, moons, our bodies and the cat next door accounts for just 5%. Essentially, everything we understand about the universe, including all of chemistry and biology is wrapped up in that 5%!
The current "best guess" at the identity of dark energy is the cosmological constant, the vacuum energy of energy space, which is baked into the pie we call the standard model of cosmology or the Lambda Cold Dark Matter (LCDM) model. However, this model is built on the presumption that dark energy, represented by the Greek letter lambda (Λ), is constant over time.
Vacuum energy describes the density of particles popping in and out of existence. While "something" appearing from "nothing" sounds crazy, you can think of it as the universe having an overdraft facility. Pairs of virtual particles are allow to "borrow" some energy from the cosmos to come into existence as long as they pay it back by meeting and annihilating each other.
When taken in isolation, the DESI findings don't actually challenge the picture of dark energy developed in the LCDM model. It is when the DESI data is compared with other measurements of the cosmos that problems with the cosmological constant start to manifest.
DESI is hinting, and not for the first time, that dark energy isn't constant but is changing over time. Specifically, this accelerating "push" seems to be weakening.
These measurements include our observations of a "fossil" light left over from an event that happened shortly after the Big Bang called the "last scattering," when the universe had expanded and cooled enough to allow electrons to bond with protons and form the first neutral atoms.
The disappearance of free electrons suddenly allowed photons, the particles that make up light, to travel freely. In other words, it was as if a universal fog had lifted, and the cosmos became transparent. This first light is referred to as the "cosmic microwave background" or "CMB," and it can still be observed today.
Tiny variations or "wrinkles" were "frozen into" the CMB by fluctuations in the density of matter in the early universe called baryon acoustic oscillations (BAO). As the cosmos continued to expand, so too did these wrinkles. Thus, BAO wrinkles can act as a standard measuring stick of the expansion of the universe, with their size varying at different cosmic times. This variation arises as a result of how fast the universe was expanding at those times.
Thus, measuring the BAO reveals the strength of dark energy throughout the history of the cosmos, and DESI can do this more precisely than any other instrument.
Changes in dark energy itself were also hinted at when DESI data was compared with observations of type Ia supernovas, cosmic explosions that occur when white dwarf stars "overfeed" on a companion star. This stolen material piles up on the surface of the stellar remnant until a thermonuclear runaway is triggered.
Type Ia supernovae are so uniform in terms of their light output that astronomers can use them as "standard candles" for measuring cosmic distances. In fact, type Ia supernovas were integral to the discovery that the expansion of the universe is accelerating, the genesis of dark energy, back in 1998.
These distance measurements are possible because of a phenomenon called "redshift," which occurs when the wavelength of traveling light is stretched as it crosses the expanding universe. The longer the light has traveled, the more extreme the shift toward the long wavelength "red end" of the electromagnetic spectrum. That means measuring the redshift of a very well-known and consistent source of light, a standard candle, can give distance measurements.
DESI data can also be combined with observations of an effect called "gravitational lensing," the distortion of light from distant galaxies by foreground objects of great mass to show the signature of evolving dark energy.
The evolution of dark energy isn't robust enough to be considered a "discovery" just yet, but different combinations of the data with other observations are pushing this concept toward what is considered the "gold standard" in physics for such a determination.
In addition to unveiling these latest dark energy results on Wednesday (March 19), the DESI collaboration also announced that its Data Release 1 (DR1) is now available for anyone to explore through the National Energy Research Scientific Computing Center (NERSC).
DR1 contains information regarding 18.7 million cosmic objects, including roughly 4 million stars, 13.1 million galaxies, and 1.6 million quasars.
Luz Ángela García Peñaloza, a former DESI team member and a cosmologist at the Universidad ECCI in Colombia, is just one scientist who is thrilled with the new DESI results and the fact that DR1 is now available to the general astronomical community. told Space.com.
"I am also really excited to find out DESI has released redshift information of about 19 million galaxies and quasars. We've increased the number of identified galaxies by an order of magnitude in less than 10 years!" García Peñaloza said. "The most fascinating result of all is that different sets of observations, a combination of BAO from DESI with CMB data from Planck, and the three main sets of luminosity distances of type Ia supernovas are making a stronger case for an evolving dark energy model, disfavoring the cosmological constant.
"This is getting more and more consistent with other independent cosmological tests that seem to be opening a window of opportunity for new ways to explore and study dark energy and the accelerated expansion of the universe."
Related Stories:
— 'Mind-blowing' dark energy instrument results show Einstein was right about gravity — again
— In a way, Space.com and the dark universe grew up together
— Dark energy could be getting weaker, suggesting the universe will end in a 'Big Crunch'
The availability of the DR1 data means astronomers outside the DESI collaboration can now dive into this vast dataset collected between May 2021 and June 2022.
"Our results are fertile ground for our theory colleagues as they look at new and existing models, and we're excited to see what they come up with," DESI director Michael Levi, a scientist at Berkeley Lab, said. "Whatever the nature of dark energy is, it will shape the future of our universe.
"It's pretty remarkable that we can look up at the sky with our telescopes and try to answer one of the biggest questions that humanity has ever asked.'
Meanwhile, the DESI collaboration is preparing to begin additional analyses of the new dataset to extract even more findings as DESI itself continues collecting data during its fourth year of operations.
"Just amazing," García Peñaloza concluded. "What a time to be alive and to be a cosmologist!"
The DESI data is discussed in a series of papers available here.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

NASA's Parker Solar Probe spots powerful magnetic explosion aimed at the sun's surface
NASA's Parker Solar Probe spots powerful magnetic explosion aimed at the sun's surface

Yahoo

time2 hours ago

  • Yahoo

NASA's Parker Solar Probe spots powerful magnetic explosion aimed at the sun's surface

When you buy through links on our articles, Future and its syndication partners may earn a commission. While making a death-defying dive through the sun's atmosphere, NASA's Parker Solar Probe has directly recorded a powerful plasma explosion heading toward our star's surface in unprecedented detail. Parker's new measurements found protons with about 1000 times greater energy than expected and a plasma jet shooting toward the sun, not away from it. Parker was uniquely positioned between the sun and the particles' source, allowing scientists to easily figure out where they came from. These findings indicate that the complexity and strength of tangles in the sun's magnetic field can accelerate charged particles to much greater speeds than expected from the field's strength alone. The sunward plasma jet was caused by "magnetic reconnection" in the sun's atmosphere — the explosive process in which magnetic fields fracture and reconnect. The powerful phenomenon transforms energy stored in the sun's magnetic field into energy that accelerates the solar wind — the constant stream of charged particles that the sun blasts across the solar system. Understanding magnetic reconnection is critical for making better predictions about space weather, which is driven by the solar wind and other energetic outbursts from our star. Space weather is a primary suspect for what stripped away Mars' atmosphere, turning it from a habitable planet into an icy desert wasteland. On Earth, space weather can trigger geomagnetic storms that cause blackouts, damage satellites, interfere with radio and GPS signals, and even put astronauts at risk. On the bright side, it also gives Earth its signature glorious auroras. The sun's magnetic field is extremely powerful, complex and dynamic. Space weather predictions require complicated computer simulations based on equations that describe how magnetic fields behave — but the sun is so large and convoluted that these equations will always be approximations. To improve the models' accuracy, scientists must collect extremely detailed measurements of the sun. This is where the Parker Solar Probe comes in. The Parker Solar Probe is the first mission to fly into the sun's upper atmosphere, called the corona. It has been directly measuring magnetic fields and particles in and around the corona in unprecedented detail, providing scientific insight into the heliosphere (the sun's atmosphere, which encompasses the entire solar system in a massive, elongated bubble). Related: NASA's daredevil solar spacecraft survives 2nd close flyby of our sun "These findings indicate that magnetic reconnection … is an important source of energetic particles in the near-Sun solar wind," lead study author Mihir Desai, director of the Southwest Research Institute's Department of Space Research, said in a statement. "Everywhere there are magnetic fields there will be magnetic reconnection. But the Sun's magnetic fields are much stronger near the star, so there's a lot more stored energy to be released." Understanding the workings of magnetic reconnection events could help scientists better predict harmful space weather, the researchers said. RELATED STORIES —New 8K-resolution photos of the sun show off incredible details of raging sunspots —Space photo of the week: Pink 'raindrops' on the sun captured in greatest detail ever —Powerful Mother's Day geomagnetic storm created radio-disrupting bubbles in Earth's upper atmosphere "Reports from the American Meteorological Society indicated that the powerful solar events in May 2024 wreaked havoc with farmers when extreme geomagnetic storms disrupted the precise GPS-guided navigation systems used to plant, fertilize and harvest rows of seeds, causing an estimated loss of up to $500 million in earning potential," Desai said. "Parker's access to this new data is critical, particularly as we remain in the midst of a very active solar cycle." The latest measurements of magnetic reconnection, reported in a paper published May 29 in The Astrophysical Journal Letters, are one of many new discoveries Parker has made. In 2023, over 700 peer-reviewed scientific papers were published using data collected in the probe's first four years of operation, and there are still many more discoveries to be made. The spacecraft completed its second ultra-close flyby of the sun on March 22, zooming within 3.8 million miles (6.1 million kilometers) of the sun's surface — matching its own record from December 2024.

See the moon shine with famous red star Antares in the southern sky on June 9
See the moon shine with famous red star Antares in the southern sky on June 9

Yahoo

time4 hours ago

  • Yahoo

See the moon shine with famous red star Antares in the southern sky on June 9

When you buy through links on our articles, Future and its syndication partners may earn a commission. The waxing gibbous moon will shine close to the red star Antares in the constellation Scorpius on the night of June 9. Stargazers in the U.S. will find the moon rising higher over the southeastern horizon after sunset on June 9, with Antares shining brightly around 4 degrees to the lower left of the lunar disk. For context, your little finger held at arms length accounts for roughly 1 degree in the night sky, while your index, middle and ring fingers together amount to around 5 degrees, according to NASA. Antares is also known as the "Heart of the Scorpion" thanks to its prominent position in the zodiacal constellation Scorpius, which itself contains a number of stunning deep sky objects, such as the Messier 4 globular cluster and the closest stellar nursery to Earth — Rho Ophiuchi. As a red supergiant, Antares boasts a diameter 700 times greater than our sun and is known to shine roughly 10,000 times brighter. It is expected to end its life in a dramatic supernova explosion when it runs out of fuel — an event that could happen anytime from tomorrow to a million years or so from now. The lunar disk will appear to close in on Antares as the night of June 9 progresses, with the red star eventually setting above the moon's upper left shoulder as the duo slip beneath the southwestern horizon in the predawn hours of June 10. Viewers based in a number of southern hemisphere countries, including Australia, Tasmania and Papua New Guinea, will see the moon slide directly in front of Antares, blocking its light in an event known as an '"occultation" starting at 4:47 a.m. EDT (0847 GMT), according to Stargazers hoping to capture the majesty of the lunar surface should check out our handy guide detailing how to photograph the moon, while those looking for a closer view of the cosmos should read our lists of the best telescopes and binoculars for exploring the night sky. Editor's Note: If you happen to capture a picture of the moon and Antares and want to share it with readers, then please send your photo(s), comments, and your name and location to spacephotos@

HIV/AIDS: Facts about the viral infection that attacks the immune system
HIV/AIDS: Facts about the viral infection that attacks the immune system

Yahoo

time4 hours ago

  • Yahoo

HIV/AIDS: Facts about the viral infection that attacks the immune system

When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS ABOUT HIV What it is: A lifelong viral infection that weakens the immune system, if left untreated Prevention methods: Taking preventive medicines called PrEP, using condoms, and avoiding needle sharing Treatments: Medicines called antiretroviral therapy (ART) Human immunodeficiency virus (HIV) is a germ that causes a lifelong infection that slowly weakens the immune system. Though the infection is lifelong, medicines can keep the virus in check and help people reach lifespans of near-normal length. However, when people don't have access to those medicines, HIV infections progress to an advanced stage called acquired immunodeficiency syndrome (AIDS), which is fatal within about three years if not treated. When a person has AIDS, most of their key, disease-fighting immune cells are lost. This loss of immune protection leaves the person vulnerable to deadly infections and cancers. Although an HIV diagnosis was once a death sentence, scientists have developed treatments that suppress the virus and enable people to live long lives without transmitting the disease to others. Additionally, there are now effective preventive medications that can dramatically reduce the risk of getting HIV in the first place. There is not yet a widespread cure for HIV/AIDS, although a handful of people have been cured of the infection or are in long-term remission thanks to special stem-cell transplants, specially cell transplants from people who have genes that make them resistant to the virus. Scientists are exploring potential avenues for a cure, which could someday mean that people who contract HIV could be rid of the infection rather than having to take medication for life to manage the disease. HIV/AIDS remains a major public health threat worldwide, with an estimated 39.9 million people living with the disease at the end of 2023. Around 630,000 people died from illnesses related to AIDS the same year; by weakening the immune system, AIDS opens the door to these fatal diseases. HIV can spread through contact with an infected person's bodily fluids, although it's important to note that not all bodily fluids can transmit the virus. Bodily fluids that can spread HIV include blood, semen, preseminal fluid, vaginal secretions, breastmilk and rectal discharge (liquid from the anus that's not blood or stool). HIV is not transmitted through saliva, sweat or tears. It's also not spread through the air or through casual contact, such as hugging, shaking hands or sharing food. For transmission to occur, the bodily fluids containing HIV must come into contact with mucous membranes — tissues that line cavities in the body, like the vagina, anus or mouth. The fluids can also transmit HIV when they come into contact with cuts or sores, or when they're introduced to the bloodstream via contaminated needles, for instance. Most people who contract HIV get it through unprotected anal or vaginal sex — meaning sex without a condom or without HIV-preventing medications. People can also contract the virus by sharing the equipment used to inject drugs, such as needles or syringes. Babies can get HIV in the womb, during childbirth or from breastfeeding, if their mother has HIV. People living with HIV who take medicines called ART can suppress the virus to the point that it can't spread via sex. These "virally suppressed" people also have a much lower chance of transmitting HIV to their kids via pregnancy, childbirth or breastfeeding. They are also less likely to spread the virus via shared injection equipment, although experts aren't sure exactly how much the risk is reduced. The symptoms of HIV vary depending on how far the disease has progressed. The virus can spread from one person to another at any stage of the infection, unless the infected person is taking ART and has reached "viral suppression" (see glossary). The initial stage is called "acute HIV infection." Within two to four weeks of contracting the virus, many people develop a flu-like illness involving symptoms like fever, headache, rash and sore throat. These symptoms can last from a few days to a few weeks. Some people have no symptoms at this stage, however. The viral load, or amount of HIV in the blood, at this stage is very high. The second stage of the disease is "chronic HIV infection," during which the virus continues to multiply but at a slower speed than during acute infection. This stage is also called "clinical latency" or "asymptomatic HIV infection," as many people don't feel sick during it. People can remain in this stage of the disease for 10 to 15 years, though some pass through it more quickly. As the virus multiplies, levels of an important type of immune cell — CD4 T lymphocytes — decline. Without treatment, the disease will eventually enter its most advanced stage: AIDS. This can come with a wide range of symptoms, including rapid weight loss; recurring fever; night sweats; extreme tiredness; prolonged swelling of the lymph nodes; diarrhea; sores of the mouth, anus or genitals; and blotches on or under the skin or inside the mouth, nose or eyelids. It can also trigger neurological problems, like memory loss. AIDS raises the risk of severe bacterial infections and cancers, including lymphomas and Kaposi's sarcoma. It can also worsen viral infections, such as hepatitis B and mpox. Without any treatment, people with AIDS typically survive about three years. HIV and AIDS are related, in that AIDS is the most advanced stage of an HIV infection, and therefore, the HIV virus causes both conditions. AIDS can also be called a "stage 3 HIV infection." AIDS is defined in part by a very low CD4 count of fewer than 200 CD4 cells per cubic millimeter (mm3) of blood. Generally speaking, the CD4 counts of healthy teens and adults are around 500 to 1,200 cells/mm3. Anything below 500 cells/mm3 is considered low, and 200 cells/mm3 marks the threshold for an AIDS diagnosis. Doctors also diagnose AIDS by considering a patient's history of "AIDS-defining illnesses." These are medical conditions often seen in people with AIDS because their immune systems can't fight the illnesses off. They include "opportunistic" infections — those caused by germs that wouldn't necessarily harm a person with a well-functioning immune system. Such infections include a fungal infection called extrapulmonary cryptococcosis, recurrent blood infections with Salmonella bacteria, the parasitic infection toxoplasmosis, and lower respiratory infections caused by the herpes simplex virus. The bacterial disease tuberculosis poses a major risk to people with AIDS, and it is currently the leading cause of death for people living with HIV/AIDS worldwide. AIDS-defining illnesses also include cancers such as Kaposi's sarcoma, Burkitt's lymphoma and invasive cervical cancer. Others include HIV encephalopathy, which affects brain function, and HIV wasting syndrome, which causes extreme weight loss and weakness. Complications of AIDS-defining illnesses raise the risk of death, but the degree of risk varies among diseases. At all three stages of the infection, HIV is treated with antiretroviral therapy (ART) — combinations of medications that drive down the amount of HIV in the blood. Different ART drugs work in different ways to keep the amount of virus, or viral load, in check. They are available as daily pills or as shots given periodically throughout the year, depending on the person's treatment plan. It's key for patients to take their medication as prescribed, because missing pills or shots can open the door for the virus to multiply, as well as develop drug resistance, which causes the medication to work less well. ART medications can also interact with other drugs and carry some risk of serious side effects, so patients work with their medical providers to figure out which drug combination is best for them. The goal of ART is "viral suppression," which describes when a person's viral load falls low enough that there are 200 or fewer copies of the virus's genetic material per milliliter (mL) of blood. Historically, tests weren't sensitive enough to detect levels of HIV below that threshold, so doctors called this level "undetectable." Studies also found that people who reach viral suppression can't transmit the virus via sex; have a lower chance of spreading the virus through pregnancy, childbirth or breastfeeding; and likely have a lower chance of spreading it through needle sharing. This is why the slogan "undetectable equals untransmittable," or "U = U," was coined. Nowadays, some tests for HIV are extremely sensitive, so they can detect viral loads significantly below 200 copies/mL. However, experts emphasize that 200 copies/mL is still the critical threshold at which transmission risk becomes extremely low. If a person with HIV/AIDS develops another medical condition, such as an AIDS-defining illness, the individual would receive treatment for that condition in addition to their ART regimen. There is no widespread cure for HIV/AIDS. However, a handful of people have been cured of their HIV infections through stem cell transplants, and a few more are considered "potentially" cured via the same process. Stem cells can develop into different types of cells in the body. In certain cancers that affect blood cells, stem cell transplants can be used to replace the cells lost in the course of cancer treatments such as chemotherapy. Each individual who has been cured of HIV also had one of these cancers, so their doctors searched for stem cell donors who carry a rare gene that makes them resistant to HIV infection. By swapping in cells from an HIV-resistant individual, the procedure essentially locks the virus out of the patient's CD4 cells. There is one exception to this rule: A person known as the "Geneva patient" was potentially cured of HIV after a stem cell transplant, but the donor didn't have this special genetic resistance. It's unclear exactly why the man entered long-term remission from the infection after this procedure, but scientists are investigating. There have also been a couple of cases in which people's own immune systems somehow rallied against the virus and controlled it without treatment; these people are known as "elite controllers." Scientists hope to learn from both the stem cell recipients and from elite controllers to discover cures that could reach far more people with HIV/AIDS. Meanwhile, some researchers are exploring the use of gene-editing tools like CRISPR to cure the infection, while others are investigating the use of drugs and modified immune cells. Antiretroviral therapy (ART) – Combinations of medications that lower the amount of HIV in a person's blood. These drugs, given as pills or shots, prevent the viral infection from progressing to AIDS and dramatically lower a person's risk of complications and of transmitting the virus to others. Pre-exposure prophylaxis (PrEP) – Medicines that people at risk of being exposed to HIV take to prevent the infection. Viral load – The amount of HIV in a person's blood. This is measured in terms of the number of HIV RNA molecules — the virus's genetic material — found in a milliliter of blood. It's an important way to measure how well ART is working. Viral suppression – When a person's viral load falls to 200 copies/mL or lower. Viral suppression is the goal of ART, as it both lowers a person's likelihood of spreading the virus and extends their lifespan by preventing the infection from progressing to AIDS. CD4 T lymphocyte – A type of white blood cell that helps coordinate the actions of other immune cells to fight infections. HIV infects CD4 cells and uses them to multiply while the virus depletes the number of CD4 cells in the body. Image 1 of 4 In the 1980s and 1990s, groups organized "die-ins" to protest the lack of U.S. government attention to the ongoing HIV/AIDS crisis. Die-ins were also conducted to push for support for research to uncover effective treatments and, once treatments were discovered, to demand that those drugs be released to the public. The AIDS Coalition to Unleash Power — known as ACT UP — was a major force behind such protests and remains an active organization today. Image 2 of 4 Kaposi's sarcoma, an example of an AIDS-defining illness, characteristically causes big, purple patches or nodules to appear on the skin and mucous membranes. Image 3 of 4 The public health slogan "U = U," depicted on this sign, refers to the fact that people living with HIV who have undetectable viral loads cannot transmit the virus to others via sex. It stands for "undetectable = untransmittable." Image 4 of 4 The "Berlin patient," pictured here, was the first person cured of HIV via a stem cell transplant. His name was later revealed to be Timothy Ray Brown. Brown went on to launch a foundation under his name that was dedicated to fighting HIV/AIDS. We could end the AIDS epidemic in less than a decade. Here's how. In a 1st, HIV vaccine triggers rare and elusive antibodies in humans Nearly 3 million extra deaths by 2030 could result from HIV funding cuts, study suggests

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store