Did Dire Wolves Just Come Back From Extinction? Here's The Truth.
The internet is currently abuzz with talk of dire wolves – an extinct species of prehistoric wolf that used to roam North America and that was famously featured in the HBO fantasy series, Game of Thrones.
A Dallas-based biotech company, Colossal Biosciences, claims to have resurrected the prehistoric Ice Age species (Aenocyon dirus) in the form of three genetically engineered grey wolf pups named Romulus, Remus, and Kaleesi.
"On October 1, 2024, for the first time in human history, Colossal successfully restored a once-eradicated species through the science of de-extinction," reads the company's official press release.
"Colossal's innovations in science, technology, and conservation made it possible to accomplish something that's never been done before: the revival of a species from its longstanding population of zero."
With thick pelts not seen in modern wolves, the white-furred pups may well pass for a distinct new type of wolf, but in the words of American astronomer and science communicator Carl Sagan, "Extraordinary claims require extraordinary evidence."
Right now, details of the non-peer-reviewed research are very limited. All the public has to go on are images and quotes provided by Colossal.
Jeremy Austin, Director of the Australian Centre for Ancient DNA, told ScienceAlert that all Colossal has done is create a genetically engineered gray wolf that looks like what the company thinks a dire wolf might have looked like. And even that is up for debate; canids are morphologically similar, making it hard to verify from fossil remains the exact appearance of an extinct member of the family.
Evolutionary biologist Beth Shapiro of Colossal has given a definition of a species that Austin finds misleading.
"Species concepts are human classification systems, and everybody can disagree and everyone can be right," Shapiro told Michael Le Page at New Scientist.
"I think that the best definition of a species is if it looks like that species, if it is acting like that species, if it's filling the role of that species, then you've done it," she told ABC News.
But looks aren't everything. Cryptic species, for instance, are organisms that are almost indistinguishable but are genetically distinct and do not typically interbreed.
Austin compares Shapiro's lenient definition to the literary folktale, the Emperor's New Clothes.
"If you say you've done something, and enough people believe you, then, well, you've done it," Austin told ScienceAlert.
"Whereas I think a lot of scientists are going to be scratching their heads, saying, 'Look, you've got a white, gray wolf.' That's not a dire wolf under any definition of a species ever… I don't think that this represents de-extinction in any way, shape, or form."
Adam Boyko, a geneticist at Cornell University who was not involved in the project, told Carl Zimmer at the New York Times that he also doesn't consider Romulus, Remus, and Khaleesi to be 'resurrected' dire wolves.
Though closely related, studies on their genes have found dire wolves split from other canids around 5.7 million years ago, with no sign of an exchange of genes with North America's gray wolf ancestral populations.
To create these pups, scientists at Colossal used past genetic sequencing studies to make just 20 unique precision edits to the 2.5 billion base pairs in gray wolf germline cells. They then used surrogate dog mothers to give birth to the genetically engineered gray wolf pups.
Colossal hasn't claimed an intention to make a genetically precise dire wolf. But even if they are trying to create a wolf that looks and behaves like they think a dire wolf would, Austin says that would still probably require tens of thousands if not hundreds of thousands of critical genetic changes.
Five of the 20 gene edits made to the gray wolves were apparently associated with light coat color alone, according to New Scientist's interview with Shapiro.
The chief animal officer at Colossal who oversaw the pregnancies and births, Matt James, told the New York Times that when the pups were born, he could tell they were a success the moment he spotted a white coat.
Austin admits that this research is valuable, with real applications in conservation, genetics, and understanding the evolutionary development of different organisms.
But he says, "for a fully trained wolf biologist or wolf taxonomist or a wolf evolutionary biologist to come out and say, 'I know we have a dire wolf because it was white', is really cutting so many corners in terms of resurrecting extinct animals… it kind of brings the whole thing into real disrepute."
Colossal claims that they are proud to return the dire wolf to its "rightful place in the ecosystem." But is it really their 'rightful place', or will they threaten other animals that have not gone extinct? It's also worth considering if the ecosystem dire wolves once used to live in even exists anymore.
"Is there an ecological place for dire wolves in the modern world?" wonders Austin.
"Or are they just are they just zoo animals that people are going to go and pay money to see and say, 'Hey, we saw a dire wolf today', while Jeremy is standing in the background saying, 'No, you didn't see a dire wolf. You saw a white gray wolf'."
"It's a bit like the guy in the Chinese zoo who had dogs that he painted to be pandas. And everyone you know fell for that story."
How Do Dogs Perceive The World? It All Starts With The Nose
One Brain Receptor Explains Why 'Virgin' Male Worms Take More Risks
Something Truly Scary Discovered at The Bottom of Belize's Great Blue Hole
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
17 minutes ago
- Yahoo
How many ice ages has the Earth had, and could humans live through one?
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to curiouskidsus@ How many ice ages has the Earth had, and could humans live through one? – Mason C., age 8, Hobbs, New Mexico First, what is an ice age? It's when the Earth has cold temperatures for a long time – millions to tens of millions of years – that lead to ice sheets and glaciers covering large areas of its surface. We know that the Earth has had at least five major ice ages. The first one happened about 2 billion years ago and lasted about 300 million years. The most recent one started about 2.6 million years ago, and in fact, we are still technically in it. So why isn't the Earth covered in ice right now? It's because we are in a period known as an 'interglacial.' In an ice age, temperatures will fluctuate between colder and warmer levels. Ice sheets and glaciers melt during warmer phases, which are called interglacials, and expand during colder phases, which are called glacials. Right now we are in the most recent ice age's warm interglacial period, which began about 11,000 years ago. When most people talk about the 'ice age,' they are usually referring to the last glacial period, which began about 115,000 years ago and ended about 11,000 years ago with the start of the current interglacial period. During that time, the planet was much cooler than it is now. At its peak, when ice sheets covered most of North America, the average global temperature was about 46 degrees Fahrenheit (8 degrees Celsius). That's 11 degrees F (6 degrees C) cooler than the global annual average today. That difference might not sound like a lot, but it resulted in most of North America and Eurasia being covered in ice sheets. Earth was also much drier, and sea level was much lower, since most of the Earth's water was trapped in the ice sheets. Steppes, or dry grassy plains, were common. So were savannas, or warmer grassy plains, and deserts. Many animals present during the ice age would be familiar to you, including brown bears, caribou and wolves. But there were also megafauna that went extinct at the end of the ice age, like mammoths, mastodons, saber-toothed cats and giant ground sloths. There are different ideas about why these animals went extinct. One is that humans hunted them into extinction when they came in contact with the megafauna. Yes, people just like us lived through the ice age. Since our species, Homo sapiens, emerged about 300,000 years ago in Africa, we have spread around the world. During the ice age, some populations remained in Africa and did not experience the full effects of the cold. Others moved into other parts of the world, including the cold, glacial environments of Europe. And they weren't alone. At the beginning of the ice age, there were other species of hominins – a group that includes our immediate ancestors and our closest relatives – throughout Eurasia, like the Neanderthals in Europe and the mysterious Denisovans in Asia. Both of these groups seem to have gone extinct before the end of the ice age. There are lots of ideas about how our species survived the ice age when our hominin cousins did not. Some think that it has to do with how adaptable we are, and how we used our social and communication skills and tools. And it appears that humans didn't hunker down during the ice age. Instead they moved into new areas. For a long time it was thought that humans did not enter North America until after the ice sheets started to melt. But fossilized footprints found at White Sands National Park in New Mexico show that humans have been in North America since at least 23,000 years ago – close to the peak of the last ice age. Hello, curious kids! Do you have a question you'd like an expert to answer? Ask an adult to send your question to CuriousKidsUS@ Please tell us your name, age and the city where you live. And since curiosity has no age limit – adults, let us know what you're wondering, too. We won't be able to answer every question, but we will do our best. This article is republished from The Conversation, a nonprofit, independent news organization bringing you facts and trustworthy analysis to help you make sense of our complex world. It was written by: Denise Su, Arizona State University Read more: What will the Earth be like in 500 years? Small climate changes can have devastating local consequences – it happened in the Little Ice Age Last of the giants: What killed off Madagascar's megafauna a thousand years ago? Denise Su does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.
Yahoo
an hour ago
- Yahoo
Opinion - Endangered species deserve a home, too
The elusive Northern Spotted Owl. The majestic Whooping Crane. Charismatic Florida panthers and beloved Monarch butterflies. These and many other endangered species now face even graver threats in the wake of two recent developments in the world of conservation. On Apr. 7, the billion-dollar biotech firm Colossal announced the 'de-extinction' of the dire wolf, a canine species that vanished in the Late Pleistocene (approximately 13,000 years ago). And on Apr. 17, the Trump administration revealed its intention to weaken decades-old endangered species protections by redefining a key word: harm. This narrower definition effectively rescinds protection of an endangered species' habitat, limiting harm to actions that 'directly' harass, injure or kill organisms. What these two developments have in common is a disregard for the vital connection that exists between species and the places they call home. Habitat refers to the place where an organism naturally or normally lives. Removal of habitat protection opens the door to logging, development and extraction of oil and minerals. The proposed definition of harm could convert fragile wetlands into farmland, migration corridors into freeways and nesting sites into beachfront property — and none of this would qualify as harm to the creatures who live there. A habitat includes the specific resources and conditions that a given species needs to survive — the plants or animals it feeds on, and particular features of topography, soil, climate and water. Some species are especially vulnerable to extinction because they require a very rare or specific type of habitat. Others are at risk because they range across several. Many butterfly species, for example, are reliant on a single host plant for every stage of their life cycle — mating, laying eggs and feeding their young. Even plants closely related to the host plant cannot replace these vital functions, however indistinguishable they may appear to the human eye. Migratory creatures, meanwhile, depend upon many habitats in far-flung geographic locations. A recent study found that approximately half of all migratory species are in decline. Annually, billions of migratory birds crisscross state and national boundaries, with varying degrees of legal protections for the places where they nest, feed or rest. Further erosion of habitat protection could be the death knell for these and other vulnerable species. Were species not so intimately tied to their environments, it might make sense to regard lab-created or genetically engineered organisms, like the recently unveiled dire wolves, as suitable replacements for endangered or extinct species. Conservation would be akin to curating museum or zoo specimens, with living representatives of endangered species, or mere samples of their genetic material, maintained in artificial environments. Disregard for the importance of habitat is evident in the fanfare over Colossal's so-called dire wolves — more accurately, grey wolves with dire wolf DNA spliced into their genome. Consider that in their original Pleistocene environments, true dire wolves preyed upon large herbivorous megafauna that are now extinct: sloths, mastodons, giant bison and camels. By contrast, Remus, Romulus and Khaleesi, the telegenic trio of fluffy white wolves created by Colossal, will live their entire lives in a highly secured, undisclosed site, subsisting on a hand-fed diet of ground meats and kibble. In short, the same flawed logic lies behind the dire wolf 'de-extinction' and the Trump proposal to redefine harm: Both treat species as if they live in a vacuum. Doug Burgum, the Trump-appointed secretary of the Interior, exemplified this sort of thinking when he took to social media to hail de-extinction as the 'bedrock' of future conservation, arguing simultaneously for re-think of endangered species protections: 'It has been innovation—not regulation—that has spawned American greatness,' he said. Citing Colossal's breakthrough, Burgum questioned the need for an endangered species list. Ten days later, the administration moved to weaken endangered species regulation by excluding habitat from the definition of harm. Yet, habitat loss remains the primary culprit of species endangerment and extinction. While these losses can occur naturally through periodic events like fires or earthquakes, the vast majority of habitat degradation, fragmentation and loss stems from human activity: land development, deforestation, large-scale agriculture, air and water pollution, and human-caused climate change, among other factors. Even amid intensified political polarization, endangered species protection is wildly popular, with 84 percent of Americans supporting the Endangered Species Act. In the past month, some 350,000 members of the public weighed in to protest changes to the act. Many offered the commonsense argument that destroying the home of any living being, human or nonhuman, clearly constitutes harm, as surely as a gun pointed to the head. Innovation in conservation science, including cutting-edge genetic techniques aimed at saving species on the brink of extinction, is welcome and should be encouraged. But innovation is no substitute for regulation, any more than a laboratory or zoo is a substitute for the places where animals naturally live. Endangered species face a barrage of threats from human activities. We owe them a place to call home. Lisa H. Sideris is a Public Voices fellow of The OpEd Project and the University of California. Santa Barbara, where she is professor and vice-chair of the Environmental Studies Program. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.


The Hill
3 hours ago
- The Hill
Endangered species deserve a home, too
The elusive Northern Spotted Owl. The majestic Whooping Crane. Charismatic Florida panthers and beloved Monarch butterflies. These and many other endangered species now face even graver threats in the wake of two recent developments in the world of conservation. On Apr. 7, the billion-dollar biotech firm Colossal announced the 'de-extinction' of the dire wolf, a canine species that vanished in the Late Pleistocene (approximately 13,000 years ago). And on Apr. 17, the Trump administration revealed its intention to weaken decades-old endangered species protections by redefining a key word: harm. This narrower definition effectively rescinds protection of an endangered species' habitat, limiting harm to actions that 'directly' harass, injure or kill organisms. What these two developments have in common is a disregard for the vital connection that exists between species and the places they call home. Habitat refers to the place where an organism naturally or normally lives. Removal of habitat protection opens the door to logging, development and extraction of oil and minerals. The proposed definition of harm could convert fragile wetlands into farmland, migration corridors into freeways and nesting sites into beachfront property — and none of this would qualify as harm to the creatures who live there. A habitat includes the specific resources and conditions that a given species needs to survive — the plants or animals it feeds on, and particular features of topography, soil, climate and water. Some species are especially vulnerable to extinction because they require a very rare or specific type of habitat. Others are at risk because they range across several. Many butterfly species, for example, are reliant on a single host plant for every stage of their life cycle — mating, laying eggs and feeding their young. Even plants closely related to the host plant cannot replace these vital functions, however indistinguishable they may appear to the human eye. Migratory creatures, meanwhile, depend upon many habitats in far-flung geographic locations. A recent study found that approximately half of all migratory species are in decline. Annually, billions of migratory birds crisscross state and national boundaries, with varying degrees of legal protections for the places where they nest, feed or rest. Further erosion of habitat protection could be the death knell for these and other vulnerable species. Were species not so intimately tied to their environments, it might make sense to regard lab-created or genetically engineered organisms, like the recently unveiled dire wolves, as suitable replacements for endangered or extinct species. Conservation would be akin to curating museum or zoo specimens, with living representatives of endangered species, or mere samples of their genetic material, maintained in artificial environments. Disregard for the importance of habitat is evident in the fanfare over Colossal's so-called dire wolves — more accurately, grey wolves with dire wolf DNA spliced into their genome. Consider that in their original Pleistocene environments, true dire wolves preyed upon large herbivorous megafauna that are now extinct: sloths, mastodons, giant bison and camels. By contrast, Remus, Romulus and Khaleesi, the telegenic trio of fluffy white wolves created by Colossal, will live their entire lives in a highly secured, undisclosed site, subsisting on a hand-fed diet of ground meats and kibble. In short, the same flawed logic lies behind the dire wolf 'de-extinction' and the Trump proposal to redefine harm: Both treat species as if they live in a vacuum. Doug Burgum, the Trump-appointed secretary of the Interior, exemplified this sort of thinking when he took to social media to hail de-extinction as the 'bedrock' of future conservation, arguing simultaneously for re-think of endangered species protections: 'It has been innovation—not regulation—that has spawned American greatness,' he said. Citing Colossal's breakthrough, Burgum questioned the need for an endangered species list. Ten days later, the administration moved to weaken endangered species regulation by excluding habitat from the definition of harm. Yet, habitat loss remains the primary culprit of species endangerment and extinction. While these losses can occur naturally through periodic events like fires or earthquakes, the vast majority of habitat degradation, fragmentation and loss stems from human activity: land development, deforestation, large-scale agriculture, air and water pollution, and human-caused climate change, among other factors. Even amid intensified political polarization, endangered species protection is wildly popular, with 84 percent of Americans supporting the Endangered Species Act. In the past month, some 350,000 members of the public weighed in to protest changes to the act. Many offered the commonsense argument that destroying the home of any living being, human or nonhuman, clearly constitutes harm, as surely as a gun pointed to the head. Innovation in conservation science, including cutting-edge genetic techniques aimed at saving species on the brink of extinction, is welcome and should be encouraged. But innovation is no substitute for regulation, any more than a laboratory or zoo is a substitute for the places where animals naturally live. Endangered species face a barrage of threats from human activities. We owe them a place to call home. Lisa H. Sideris is a Public Voices fellow of The OpEd Project and the University of California. Santa Barbara, where she is professor and vice-chair of the Environmental Studies Program.