logo
'Exquisitely preserved' ginormous claws from Mongolia reveal strange evolution in dinosaurs

'Exquisitely preserved' ginormous claws from Mongolia reveal strange evolution in dinosaurs

Yahoo26-03-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
A new species of dinosaur with strange claws has been unearthed in Mongolia by paleontologists.
This new genus and species is a therizinosaur, plant-eating, two-legged giants with long claws, and was discovered buried in the Gobi Desert, according to a new study published Tuesday (March 25) in the journal iScience.
Unlike other therizinosaurs, which have three fingers on their hands equipped with long, sharp claws, this new species only has two fingers. This unique anatomy inspired its scientific name, named Duonychus tsogtbaatari, which is Greek for "two digits" and honors the Mongolian paleontologist Khishigjav Tsogtbaatar.
"Many species of therizinosaurs have been discovered, and this group had pretty much been defined by their three-fingered hands sporting large claws," study co-author Darla Zelenitsky, a paleontologist at the University of Calgary in Canada, told Live Science in an email. "To find a specimen with only two fingers/claws was surprising as this was so out of the ordinary for this group of dinosaurs."
Related: 166 million-year-old fossil found on Isle of Skye belongs to pony-size dinosaur from Jurassic
Therizinosaurs are a group of dinosaurs that lived across what is now Asia and North America during the Late Cretaceous Period (100 million to 66 million years ago). Despite being part of the theropod group of dinosaurs — typically associated with carnivorous dinosaurs like Tyrannosaurus rex — therizinosaurs were herbivorous. These dinosaurs are known for their enormous, sickle-shaped claws, with some species growing talons as long as 20 inches (50 centimeters).
All other therizinosaurs that have previously been discovered, including Therizinosaurus and Beipiaosaurus, have three clawed fingers on their hands, making the discovery of two-clawed D. tsogtbaatari unusual.
"Therizinosaurs are already some of the most unusual dinosaurs out there, but Duonychus tsogtbaatari takes it to another level," study lead author Yoshitsugu Kobayashi, a paleontologist at Hokkaido University in Japan, told Live Science in an email. "This newly discovered species from Mongolia breaks the mold with just two fingers instead of the typical three, offering a rare glimpse into how theropod hands evolved and adapted." "But what truly makes this discovery exciting is the incredibly well-preserved keratinous sheath on its claw — the first such case in a medium- to large-sized theropod dinosaur," Kobayashi added.
Image 1 of 2
Claws of the newly discovered Duonychus tsogtbaatari fossil. This species is the first therizinosaur to have been found with only two clawed fingers.
Image 2 of 2
Duonychus tsogtbaatari fossil claw during excavation.
The new fossil was unearthed during the construction of a water pipeline in the Bayanshiree Formation in Ömnögovi Province, southern Mongolia. The specimen had excellently preserved hands, with a 3D sheath where the claw — made out of keratin, like our fingernails — would have been. Parts of the arms, spine and hips were also preserved.
"The hands, a hallmark of therizinosaurs, are exquisitely preserved with all the finger and wrist bones intact in this specimen," Zelenitsky said. "Even the keratinous sheath of the claw is preserved revealing how big and sharp its claws really were."
Other species of dinosaur, such as T. rex, had two fingers, but this marks the first time a therizinosaur has been found with fewer than three digits. This species likely evolved to lose one of the three fingers of its ancestors, the study authors suggested.
The researchers think that D. tsogtbaatari may have evolved this unique hand in order to better grip vegetation, allowing for more efficient feeding.
"The loss of the third finger in Duonychus tsogtbaatari might actually have made its remaining two fingers even better at what they were designed for — grasping," Kobayashi said. "Based on the shape of its well-preserved claw and how it curved, Duonychus was likely using its hands to grab onto branches and pull vegetation closer, kind of like how chameleons do today." "We think many therizinosaurs may have used their hands for foraging in a 'hook-and-pull' motion, but Duonychus takes this to another level with its extreme claw structure."
RELATED STORIES
—Australia's 'upside down' dinosaur age had two giant predators, 120 million-year-old fossils reveal
—What if a giant asteroid had not wiped out the dinosaurs?
—Secrets of 1st dinosaurs lie in the Sahara and Amazon rainforest, study suggests
Additionally, Kobayashi suggested that the claws may have played other roles, such as in "defense, courtship, or even play."
The researchers are thrilled by this discovery, as it not only reveals unexpected diversity within therizinosaurs, but also marks the fifth time that a theropod dinosaur group has evolved to lose their third finger.
"While more fossils would help confirm this, all signs point to Duonychus representing a true evolutionary shift, not just a fluke," Kobayashi said. "It's a remarkable find that reshapes our understanding of therizinosaurs and theropod evolution as a whole."

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

New species of dinosaur discovered that 'rewrites' T.rex family tree
New species of dinosaur discovered that 'rewrites' T.rex family tree

Yahoo

timean hour ago

  • Yahoo

New species of dinosaur discovered that 'rewrites' T.rex family tree

Scientists have discovered a new species of dinosaur - in the collection of a Mongolian museum - that they say "rewrites" the evolutionary history of tyrannosaurs. Researchers concluded that two 86 million-year-old skeletons they studied belonged to a species that is now the closest known ancestor of all tyrannosaurs - the group of predators that includes the iconic The researchers named the species Khankhuuluu (pronounced khan-KOO-loo) mongoliensis, meaning Dragon Prince of Mongolia. The discovery, published in Nature, is a window into how tyrannosaurs evolved to become powerful predators that terrorised North America and Asia until the end of the reign of the dinosaurs. "'Prince' refers to this being an early, smaller tyrannosauroid," explained Prof Darla Zelenitsky, a palaeontologist from the University of Calgary in Canada. Tyrannosauroids are the superfamily of carnivorous dinosaurs that walked on two legs. The first tyrannosauroids though were tiny. PhD student Jared Voris, who led the research with Prof Zelenitsky, explained: "They were these really small, fleet-footed predators that lived in the shadows of other apex predatory dinosaurs." Khankhuuluu represents an evolutionary shift - from those small hunters that scampered around during the Jurassic period - to the formidable giants, including T-rex. It would have weighed about 750kg, while an adult could have weighed as much as eight times that, so "this is a transitional [fossil]," explained Prof Zelenitsky, "between earlier ancestors and the mighty tyrannosaurs". "It has helped us revise the tyrannosaur family tree and rewrite what we know about the evolution of tyrannosaurs," she added. The new species also shows early evolutionary stages of features that were key to the tyrannosaurs' tyranny, including skull anatomy that gave it a strong jaw. Jared Voris explained: "We see features in its nasal bone that eventually gave tyrannosaurs those very powerful bite forces." The evolution of such powerful jaws allowed T-rex to pounce on larger prey, and even bite through bone. Tyrannosaur's last meal was two baby dinosaurs Fossil reveals 240 million year-old 'dragon' Solving the mystery of a dinosaur mass grave The two partial skeletons that the team examined in this study were first discovered in Mongolia back in the early 1970s. They were initially assigned to an existing species, known as Alectrosaurus, but when Mr Voris examined them, he identified the Tyrannosaur-like features that set it apart. "I remember getting a text from him - that he thought this was a new species," recalled Prof Zelenitsky. The fact that this group of dinosaurs were able to move between North America and Asia - via land bridges that connected Siberia and Alaska at the time - also helped them to find and occupy different niches. Mr Voris explained: "That movement back and forth between the continents basically pushed the evolution of different tyrannosaur groups" over millions of years. Prof Zelinitsky added: "This discovery shows us that, before tyrannosaurs became the kings, they were they were princes."

Humanity takes its 1st look at the sun's poles: 'This is just the first step of Solar Orbiter's stairway to heaven' (images)
Humanity takes its 1st look at the sun's poles: 'This is just the first step of Solar Orbiter's stairway to heaven' (images)

Yahoo

time4 hours ago

  • Yahoo

Humanity takes its 1st look at the sun's poles: 'This is just the first step of Solar Orbiter's stairway to heaven' (images)

When you buy through links on our articles, Future and its syndication partners may earn a commission. The European Space Agency's Solar Orbiter has captured humanity's first-ever images of the sun's poles. If this doesn't seem like a big deal, consider that every image you have ever seen of the sun was taken from around our star's equator. That is because Earth, the other solar system planets, and all other modern spacecraft orbit the sun in a flat disc around it called the "ecliptic plane." This European Space Agency (ESA) sun-orbiting mission has done things a little differently, however, tilting its orbit out of that plane. This allowed the Solar Orbiter to image the sun from a whole new angle and in an entirely new way. The captured images of the solar south pole were taken between March 16 and 17, 2025, with the Solar Orbiter's Polarimetric and Helioseismic Imager (PHI), Extreme Ultraviolet Imager (EUI), and Spectral Imaging of the Coronal Environment (SPICE) instruments. They constitute humanity's first ever look at the sun's poles. This was the Solar Orbiter mission's first high-angle observation campaign of the sun, conducted at an angle of 15 degrees below the solar equator. Just a few days after snapping these images, the ESA spacecraft reached a maximum viewing angle of 17 degrees, which it sits in currently as it performs its first "pole-to-pole" orbit of our star. "Spacecraft normally orbit the sun on the flat disc called the ecliptic plane, just like most of the planets in our solar system. This is the most energy-efficient way to launch and maintain orbits," co-principal leader of the Solar Orbiter's Extreme Ultraviolet Imager instrument, Hamish Reid of the Mullard Space Science Laboratory at University College London (UCL) said in a statement to "These first images of the solar poles are just the start. Over the next few years, there is scope for discovery science. "We are not sure what we will find, and it is likely we will see things that we didn't know about before." Another ESA/NASA spacecraft, Ulysses, has flown over the poles of the sun, but this spacecraft lacked an imaging instrument, and its passage of our star was also much further away than that of the Solar Orbiter. The Solar Orbiter is so useful for observing the sun because each of its instruments sees our star in very different ways. The PHI captures solar observations in visible light and is able to map its magnetic field. Meanwhile, the EUI images our star in ultraviolet light, which allows scientists to study the superheated plasma in the sun's outer atmosphere, the corona, which can reach temperatures as great as 5.4 million degrees Fahrenheit (around 3 million degrees Celsius). This could help solar scientists determine how the corona can reach temperatures much greater than the sun's surface, the photosphere, despite being much further away from the solar core, where the vast majority of the sun's heat is generated. The SPICE instrument of the Solar Orbiter, responsible for the bottom row of images in the picture above, is capable of capturing light emitted by plasmas at different temperatures above the surface of the sun. This helps to model the different layers of the solar atmosphere. Comparing these three different but complementary methods of observing the sun should allow solar scientists to map the flow of material through the outer layers of the sun. This effort could reveal hitherto undiscovered and unexpected patterns of movement, like vortices around the poles of the sun similar to those spotted above the poles of Venus and Saturn. All that is for the future, so what has this pioneering approach to solar observations revealed thus far? The main aim of the shift in Solar Orbiter's orbit around the sun is to build a more complete picture of our star's magnetic activity. This could help explain the sun's 11-year cycle that sees its activity increase toward solar maximum before the poles flip and a new cycle begins. "Being able to observe the poles is vital for understanding how the sun's magnetic field operates on a global scale, leading to an 11-year cycle in the sun's activity," Lucie Green of Mullard Space Science Laboratory at UCL, who has been working with the Solar Orbiter since 2005, said. "We'll see previously unobserved high-latitude flows that carry magnetic elements to the polar regions, and in doing so sow the fundamental seeds for the next solar cycle." Indeed, this approach has already revealed things we didn't know about our star's most southern region and its magnetism. "We didn't know what exactly to expect from these first observations – the sun's poles are literally terra incognita,' Sami Solanki, who leads the PHI instrument team from the Max Planck Institute for Solar System Research (MPS), said in a statement. One of the first discoveries made by the Solar Orbiter is the fact that the magnetic fields around the sun's southern poles appear to be, for lack of a better phrase, a complete mess. While standard magnetic fields have well-defined north and south poles, these new observations reveal that north and south polarities are both found at the sun's southern seems to happen at solar maximum when the poles of the sun are about to flip. Following this exchange of poles, the fields at the north and south poles will maintain an orderly single polarity during solar minimum until solar maximum during the next 11-year cycle. "How exactly this build-up occurs is still not fully understood, so Solar Orbiter has reached high latitudes at just the right time to follow the whole process from its unique and advantageous perspective," Solanki Solar Orbiter observations also revealed that while the equator of the sun, where the most sunspots appear, possesses the strongest magnetic fields, those at the poles of our star have a complex and ever-changing structure. The Solar Orbiter's SPICE instrument provided another first for the ESA spacecraft, allowing scientists to track elements via their unique emissions as they move through the sun. Tracing the specific spectral lines of elements like hydrogen, carbon, oxygen, neon, and magnesium, a process called "Doppler measurement," revealed how materials flow through different layers of the sun. The Solar Orbiter also allowed scientists to measure the speed of carbon atoms as they are ejected from the sun in plumes and jets. "The Solar Orbite''s new vantage point will give us a fuller view of how solar wind expands to form a vast bubble around the sun and its planets called the heliosphere," Principal Investigator on the Solar Wind Analyser and Mullard Space Science Laboratory at UCL researcher Chris Owen said in a statement to "We will now see this happen in three dimensions, enhancing the single slice we get from observing only in the ecliptic plane." SPICE team leader, Frédéric Auchère from the University of Paris-Saclay, explained that Doppler measurements of the solar wind flowing from the sun by other sun-orbiting missions have suffered because they could only get a grazing view of the solar poles. "Measurements from high latitudes, now possible with Solar Orbiter, will be a revolution in solar physics," Auchère added. Related Stories: — The sun's magnetic field will flip soon. Here's what to expect — How the Sun's Magnetic Field Works — Magnetic fields appear to be as old as the universe itself. What created them? Perhaps the most exciting element of these Solar Orbiter results is the fact that the best is yet to come. This initial data has not yet been fully analyzed, for instance, an image of the solar north pole has been captured but not downloaded yet. Also, data from the ESA mission's first full "pole-to-pole" orbit of the sun, which began in February 2025, will not arrive at Earth until October 2025. "This is just the first step of Solar Orbiter's 'stairway to heaven.' In the coming years, the spacecraft will climb further out of the ecliptic plane for ever better views of the sun's polar regions," ESA's Solar Orbiter project scientist Daniel Müller said. "These data will transform our understanding of the sun's magnetic field, the solar wind, and solar activity."

A ‘dragon prince' dinosaur is redrawing the tyrannosaur family tree
A ‘dragon prince' dinosaur is redrawing the tyrannosaur family tree

Yahoo

time4 hours ago

  • Yahoo

A ‘dragon prince' dinosaur is redrawing the tyrannosaur family tree

Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. Scientists have identified a previously unknown 86 million-year-old dinosaur species that fills an early gap in the fossil record of tyrannosaurs, revealing how they evolved to become massive apex predators. Researchers analyzing the species' remains have named it Khankhuuluu mongoliensis, which translates to 'dragon prince of Mongolia,' because it was small compared with its much larger relatives such as Tyrannosaurus rex, whose name means 'the tyrant lizard king.' The newly identified dinosaur was the closest known ancestor of tyrannosaurs and likely served as a transitional species from earlier tyrannosauroid species, according to the findings published Wednesday in the journal Nature. Based on a reexamination of two partial skeletons uncovered in Mongolia's Gobi Desert in 1972 and 1973, the new study suggests that three big migrations between Asia and North America led tyrannosauroids to diversify and eventually reach a gargantuan size in the late Cretaceous Period before going extinct 66 million years ago. 'This discovery of Khankhuuluu forced us to look at the tyrannosaur family tree in a very different light,' said study coauthor Darla Zelenitsky, associate professor within the department of Earth, energy, and environment at the University of Calgary, in an email. 'Before this, there was a lot of confusion about who was related to who when it came to tyrannosaur species. What started as the discovery of a new species ended up with us rewriting the family history of tyrannosaurs.' Tyrannosaurs, known scientifically as Eutyrannosaurians, bring to mind hulking dinosaurs like Tyrannosaurus rex and Tarbosaurus, which weighed multiple metric tons and could take down equally large prey. With short arms and massive heads, they walked on two legs and boasted sharp teeth, Zelenitsky said. But tyrannosaurs didn't start out that way. They evolved from smaller dinosaurs before dominating the landscapes of North America and Asia between 85 million and 66 million years ago, the researchers said. While Tarbosaurus, an ancestor of T. rex, clocked in at between 3,000 and 6,000 kilograms (6,613 pounds and 13,227 pounds), the fleet-footed Khankhuuluu mongoliensis likely weighed only around 750 kilograms (1,653 pounds), spanned just 2 meters (6.5 feet) at the hips and 4 meters (13 feet) in length, according to the study authors. Comparing the two dinosaurs would be like putting a horse next to an elephant —Khankhuuluu would have reached T. rex's thigh in height, Zelenitsky said. 'Khankhuuluu was almost a tyrannosaur, but not quite,' Zelenitsky said. 'The snout bone was hollow rather than solid, and the bones around the eye didn't have all the horns and bumps seen in T. rex or other tyrannosaurs.' Khankhuuluu mongoliensis, or a closely related ancestor species, likely migrated from Asia to North America across a land bridge between Alaska and Siberia that connected the continents 85 million years ago, Zelenitsky said. Because of this migrant species, we now know that tyrannosaurs actually evolved first on the North American continent and remained there exclusively over the next several million years, she said. 'As the many tyrannosaur species evolved on the continent, they became larger and larger.' Due to the poor fossil record, it's unclear what transpired in Asia between 80 million to 85 million years ago, she added. While some Khankhuuluu may have remained in Asia, they were likely replaced later on by larger tyrannosaurs 79 million years ago. Meanwhile, another tyrannosaur species crossed the land bridge back to Asia 78 million years ago, resulting in the evolution of two related but very different subgroups of tyrannosaurs, Zelenitsky said. One was a gigantic, deep-snouted species, while the other known as Alioramins was slender and small. These smaller dinosaurs have been dubbed 'Pinocchio rexes' for their long, shallow snouts. Both types of tyrannosaurs were able to live in Asia and not compete with each other because the larger dinosaurs were top predators, while Alioramins were mid-level predators going after smaller prey — think cheetahs or jackals in African ecosystems today, Zelenitsky said. 'Because of their small size, Alioramins were long thought to be primitive tyrannosaurs, but we novelly show Alioramins uniquely evolved smallness as they had 'miniaturized' their bodies within a part of the tyrannosaur family tree that were all otherwise giants,' Zelenitsky said. One more migration happened as tyrannosaurs continued to evolve, and a gigantic tyrannosaur species crossed back into North America 68 million years ago, resulting in Tyrannosaurus rex, Zelenitsky said. 'The success and diversity of tyrannosaurs is thanks to a few migrations between the two continents, starting with Khankhuuluu,' she said. 'Tyrannosaurs were in the right place at the right time. They were able to take advantage of moving between continents, likely encountering open niche spaces, and quickly evolving to become large, efficient killing machines.' The new findings support previous research suggesting that Tyrannosaurus rex's direct ancestor originated in Asia and migrated to North America via a land bridge and underscore the importance of Asia in the evolutionary success of the tyrannosaur family, said Cassius Morrison, a doctoral student of paleontology at University College London. Morrison was not involved in the new research. 'The new species provides essential data and information in part of the family tree with few species, helping us to understand the evolutionary transition of tyrannosaurs from small/ medium predators to large apex predators,' Morrison wrote in an email. The study also shows that the Alioramini group, once considered distant relatives, were very close cousins of T. rex. What makes the fossils of the new species so crucial is their age — 20 million years older than T. rex, said Steve Brusatte, professor and personal chair of Palaeontology and Evolution at the University of Edinburgh. Brusatte was not involved in the new study. 'There are so few fossils from this time, and that is why these scientists describe it as 'murky,'' Brusatte said. 'It has been a frustrating gap in the record, like if you suspected something really important happened in your family history at a certain time, like a marriage that started a new branch of the family or immigration to a new country, but you had no records to document it. The tyrannosaur family tree was shaped by migration, just like so many of our human families.' With only fragments of fossils available, it's been difficult to understand the variation of tyrannosaurs as they evolved, said Thomas Carr, associate professor of biology at Carthage College in Wisconsin and director of the Carthage Institute of Paleontology. Carr was not involved in the new research. But the new study sheds light on the dinosaurs' diversity and clarifies which ones existed when — and how they overlapped with one another, he said. More samples from the fossil record will provide additional clarity, but the new work illustrates the importance of reexamining fossils collected earlier. 'We know so much more about tyrannosaurs now,' Carr said. 'A lot of these historical specimens are definitely worth their weight in gold for a second look.' When the fossils were collected half a century ago, they were only briefly described at the time, Brusatte said. 'So many of us in the paleontology community knew that these Mongolian fossils were lurking in museum drawers, waiting to be studied properly, and apt to tell their own important part of the tyrannosaur story,' he said. 'It's almost like there was a non-disclosure agreement surrounding these fossils, and it's now expired, and they can come out and tell their story.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store