First image from the world's largest solar telescope captures the sun in unheard-of detail
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.
A newly released image of the sun captured by the world's largest solar telescope shows the surface of our nearest star in unprecedented detail, shedding light on its fiery complexity.
The image is the first taken by the US National Science Foundation Daniel K. Inouye Solar Telescope's new Visible Tunable Filter, or VTF. The instrument can build a closer-than-ever, three-dimensional view of what's happening on the sun's surface, according to a news release.
The close-up reveals a cluster of continent-size dark sunspots near the center of the sun's inner atmosphere, at a scale of 6.2 miles (10 kilometers) per pixel.
These blemishes mark areas of intense magnetic activity, where solar flares and coronal mass ejections, or CMEs, are likely to occur. Coronal mass ejections are large clouds of ionized gas called plasma and magnetic fields that erupt from the sun's outer atmosphere.
Detailed images such as this one, which was taken in early December, pose an important way for scientists to learn about and predict potentially dangerous solar weather, said Friedrich Woeger, the NSF Inouye Solar Telescope instrument program scientist, in an email.
'A solar storm in the 1800s (the Carrington Event) reportedly was so energetic that it caused fires in telegraph stations,' Woeger said. 'We need to understand the physical drivers of these phenomena and how they can affect our technology and ultimately our lives.'
These energetic outbursts from the sun can interact with our planet's own electromagnetic field, causing disturbances to key infrastructure such as electrical power grids and satellite-powered communication networks, he explained.
The sun goes through periods of high and low magnetic activity in an 11-year cycle. In October, scientists from the National Oceanic and Atmospheric Administration, NASA and the international Solar Cycle Prediction Panel announced the sun reached the peak of activity, called the solar maximum. During the peak, the sun's magnetic poles flip, and more sunspots appear on its surface.
The maximum is expected to last for several months, so it's a fitting time for the Inouye Solar Telescope to be ramping up its instrument testing with spectacular images of the sun's dynamic surface.
Like boiling soup on a stove, heat escapes the core of the sun and rises to its surface through fluid motions, said Mark Miesch, a research scientist at the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder. Miesch was not involved in the research.
Sunspots, then, are like 'magnetic plugs,' or tangles in the star's complex magnetic fields that prevent the heat from reaching the surface, Miesch said. For this reason, the sunspots, which emit less light than other areas of the sun, appear darker in images and are cooler than their surroundings. Nevertheless, sunspots are 'still hotter than any oven on Earth,' he added.
The apparent texture of the sun comes from the varying densities and temperatures within its surface, which has layers similar to an onion. By 'tuning' in to different wavelengths, or colors, like a radio tuner, the VTF offers a way to probe these various layers and observe what is happening between them, Miesch said.
In other words, while an image from a personal camera uses light that contains multiple wavelengths at the same time, the VTF, a type of imaging spectro-polarimeter, filters measurable wavelengths one by one.
To accomplish this filtering, the instrument uses an etalon — two glass plates separated by mere microns.
'The principle is not unlike that of noise-canceling headphones: when two waves with similar wavelength(s) travel on the same or an intersecting path, they can interact with each other to either cancel each other out, or they can reinforce each other,' Woeger said. 'Light waves 'trapped' between those two plates interfere, and the distance between the plates selects which exact 'colors' of the light are passed on, and which ones cancel out.'
In just a few seconds, the powerful instrument captures hundreds of images through the different filters and combines them into a three-dimensional snapshot.
Researchers can then use the resulting views to study the temperature, pressure, velocity and magnetic field structure at different layers of the solar atmosphere.
'Seeing those first spectral scans was a surreal moment. This is something no other instrument in the telescope can achieve in the same way,' said Dr. Stacey Sueoka, a senior optical engineer at the National Solar Observatory, in a statement.
The imaging spectro-polarimeter represents a culmination of over a decade's worth of development.
Located at the NSF's National Solar Observatory, at the top of Maui's 10,000-foot (3,000-meter) Haleakalā volcanic mountain, the VTF itself spans multiple stories of the Inouye Solar Telescope.
After the VTF was designed and built by the Institute for Solar Physics in Germany, the instrument's parts were shipped across the Atlantic and Pacific oceans and then reassembled — like a 'ship in a bottle,' Woeger said.
The team expects the tool to be fully operational and ready for use by 2026.
'The significance of the technological achievement is such that one could easily argue the VTF is the Inouye Solar Telescope's heart, and it is finally beating at its forever place,' said Dr. Matthias Schubert, a VTF project scientist at the Institute for Solar Physics, in a statement.
The solar telescope is among several other recent efforts by scientists to better understand the sun and its stormy weather patterns, including the Solar Orbiter, a joint mission of the European Space Agency and NASA launched in 2020, and NASA's Parker Solar Probe, the first spacecraft to 'touch' the sun.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Atmospheric carbon dioxide levels break seasonal records: NOAA
Atmospheric concentrations of carbon dioxide made history last month by climbing to their highest seasonal peak available in historical records, a team of researchers reported. For the first time ever, these levels surpassed 430 parts per million (ppm) at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory in Hawaii, which is considered the global benchmark site for tracking atmospheric carbon dioxide. The 430.2 ppm calculation for May marked a 3.5 ppm increase over May 2024's reading of 426.7 ppm, according to scientists from the Scripps Institution of Oceanography at the the University of California, San Diego, who worked together with colleagues at NOAA. 'Another year, another record,' Ralph Keeling, director of the Scripps CO2 Program, said in a statement. 'It's sad.' At an elevation of 11,141 feet above sea level, the observatory is located on the slopes of the Mauna Loa volcano and produces measurements that reflect the average state of the atmosphere for the Northern Hemisphere. Carbon dioxide, the scientists explained, acts like a blanket — trapping heat and warming the lower atmosphere, as well as altering weather patterns and fueling extreme weather events. The surge in CO2 concentrations is also contributing to acidification and causing changes in ocean chemistry that affect the survival of marine organisms, according to the researchers. A half-century of sampling at Mauna Loa, conducted by researchers at both NOAA and Scripps, have provided a baseline for tracking the increase of human-generated carbon emissions, the scientists noted. They acknowledged, however, that the station does not capture the full extent as to how carbon CO2 concentrations can vary across the planet — as stations in the Southern Hemisphere have yet to cross the 430-ppm threshold. NOAA's global sampling network, as well as 14 worldwide stations operated by the Scripps CO2 program, are also contributing to the broader planetary picture and helping identify locations of carbon sources and sinks, the researchers added. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed.


The Hill
3 hours ago
- The Hill
Atmospheric carbon dioxide levels break seasonal records: NOAA
Atmospheric concentrations of carbon dioxide made history last month by climbing to their highest seasonal peak available in historical records, a team of researchers reported. For the first time ever, these levels surpassed 430 parts per million (ppm) at the National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory in Hawaii, which is considered the global benchmark site for tracking atmospheric carbon dioxide. The 430.2 ppm calculation for May 2025 marked a 3.5 ppm increase over the previous May's reading of 426.7 ppm, according to scientists from the University of California San Diego's Scripps Institution of Oceanography, who worked together with colleagues at NOAA. 'Another year, another record,' Ralph Keeling, director of the Scripps CO2 Program, said in a statement. 'It's sad.' At an elevation of 11,141 feet above sea level, the observatory is located on the slopes of the Mauna Loa volcano and produces measurements that reflect the average state of the atmosphere for the northern hemisphere. Carbon dioxide, the scientists explained, acts like a blanket — trapping heat and warming the lower atmosphere, as well as altering weather patterns and fueling extreme weather events. The surge in CO2 concentrations is also contributing to acidification and causing changes in ocean chemistry that affect the survival of marine organisms, according to the researchers. A half-century of sampling at Mauna Loa, conducted by researchers at both NOAA and Scripps, have provided a baseline for tracking the increase of human-generated carbon emissions, the scientists noted. They acknowledged, however, that the station does not capture the full extent as to how carbon CO2 concentrations can vary across the planet — as stations in the Southern Hemisphere have yet to cross the 430-ppm threshold. NOAA's global sampling network, as well as 14 worldwide stations operated by the Scripps CO2 program, are also contributing to the broader planetary picture and helping identify locations of carbon sources and sinks, the researchers added.
Yahoo
6 hours ago
- Yahoo
How one planet is revealing why it's so hard to detect life beyond Earth
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. A tiny sign revealed in April seemed like it might change the universe as we know it. Astronomers had detected just a hint, a glimmer of two molecules swirling in the atmosphere of a distant planet called K2-18b — molecules that on Earth are produced only by living things. It was a tantalizing prospect: the most promising evidence yet of an extraterrestrial biosignature, or traces of life linked to biological activity. But only weeks later, new findings suggest the search must continue. 'It was exciting, but it immediately raised several red flags because that claim of a potential biosignature would be historic, but also the significance or the strength of the statistical evidence seemed to be too high for the data,' said Dr. Luis Welbanks, a postdoctoral research scholar at Arizona State University's School of Earth and Space Exploration. While the molecules identified on K2-18b by the April study — dimethyl sulfide, or DMS, and dimethyl disulfide, or DMDS — are associated largely with microbial organisms on our planet, scientists point out that the compounds can also form without the presence of life. Now, three teams of astronomers not involved with the research, including Welbanks, have assessed the models and data used in the original biosignature discovery and got very different results, which they have submitted for peer review. Meanwhile, the lead author of the April study, Nikku Madhusudhan, and his colleagues have conducted additional research that they say reinforces their previous finding about the planet. And it's likely that additional observations and research from multiple groups of scientists are on the horizon. The succession of research papers revolving around K2-18b offers a glimpse of the scientific process unfolding in real time. It's a window into the complexities and nuances of how researchers search for evidence of life beyond Earth — and shows why the burden of proof is so high and difficult to reach. Located 124 light-years from Earth, K2-18b is generally considered a worthy target to scour for signs of life. It is thought to be a Hycean world, a planet entirely covered in liquid water with a hydrogen-rich atmosphere, according to previous research led by Madhusudhan, a professor of astrophysics and exoplanetary science at the University of Cambridge's Institute of Astronomy. And as such, K2-18b has rapidly attracted attention as a potentially habitable place beyond our solar system. Convinced of K2-18b's promise, Madhusudhan and his Cambridge colleagues used observations of the planet by the largest space telescope in operation, the James Webb Space Telescope, to study the planet further. But two scientists at the University of Chicago — Dr. Rafael Luque, a postdoctoral scholar in the university's department of astronomy and astrophysics, and Michael Zhang, a 51 Pegasi b / Burbidge postdoctoral fellow — spotted some problems with what they found. After reviewing Madhusudhan and his team's April paper, which followed up on their 2023 research, Luque and Zhang noticed that the Webb data looked 'noisy,' Luque said. Noise, caused by imperfections in the telescope and the rate at which different particles of light reach the telescope, is just one challenge astronomers face when they study distant exoplanets. Noise can distort observations and introduce uncertainties into the data, Zhang said. Trying to detect specific gases in distant exoplanet atmospheres introduces even more uncertainty. The most noticeable features from a gas like dimethyl sulfide stem from a bond of hydrogen and carbon molecules — a connection that can stretch and bend and absorb light at different wavelengths, making it hard to definitively detect one kind of molecule, Zhang said. 'The problem is basically every organic molecule has a carbon-hydrogen bond,' Zhang said. 'There's hundreds of millions of those molecules, and so these features are not unique. If you have perfect data, you can probably distinguish between different molecules. But if you don't have perfect data, a lot of molecules, especially organic molecules, look very similar, especially in the near-infrared.' Delving further into the paper, Luque and Zhang also noticed that the perceived temperature of the planet appeared to increase sharply from a range of about 250 Kelvin to 300 Kelvin (-9.67 F to 80.33 F or -23.15 C to 26.85 C) in research Madhusudhan published in 2023 to 422 Kelvin (299.93 F or 148.85 C) in the April study. Such harsh temperatures could change the way astronomers think about the planet's potential habitability, Zhang said, especially because cooler temperatures persist in the top of the atmosphere — the area that Webb can detect — and the surface or ocean below would likely have even higher temperatures. 'This is just an inference only from the atmosphere, but it would certainly affect how we think about the planet in general,' Luque said. Part of the issue, he said, is that the April analysis didn't include data collected from all three Webb instruments Madhusudhan's team used over the past few years. So Luque, Zhang and their colleagues conducted a study combining all the available data to see whether they could achieve the same results, or even find a higher amount of dimethyl sulfide. They found 'insufficient evidence' of both molecules in the planet's atmosphere. Instead, Luque and Zhang's team spotted other molecules, like ethane, that could fit the same profile. But ethane does not signify life. Arizona State's Welbanks and his colleagues, including Dr. Matt Nixon, a postdoctoral researcher in the department of astronomy at the University of Maryland College Park, also found what they consider a fundamental problem with the April paper on K2-18b. The concern, Welbanks said, was with how Madhusudhan and his team created models to show which molecules might be in the planet's atmosphere. 'Each (molecule) is tested one at a time against the same minimal baseline, meaning every single model has an artificial advantage: It is the only explanation permitted,' Welbanks said. When Welbanks and his team conducted their own analysis, they expanded the model from Madhusudhan's study. '(Madhusudhan and his colleagues) didn't allow for any other chemical species that could potentially be producing these small signals or observations,' Nixon said. 'So the main thing we wanted to do was assess whether other chemical species could provide an adequate fit to the data.' When the model was expanded, the evidence for dimethyl sulfide or dimethyl disulfide 'just disappears,' Welbanks said. Madhusudhan believes the studies that have come out after his April paper are 'very encouraging' and 'enabling a healthy discussion on the interpretation of our data on K2-18b.' He reviewed Luque and Zhang's work and agreed that their findings don't show a 'strong detection for DMS or DMDS.' When Madhusudhan's team published the paper in April, he said the observations reached the three-sigma level of significance, or a 0.3% probability that the detections occurred by chance. For a scientific discovery that is highly unlikely to have occurred by chance, the observations must meet a five-sigma threshold, or below a 0.00006% probability that the observations occurred by chance. Meeting such a threshold will require many steps, Welbanks said, including repeated detections of the same molecule using multiple telescopes and ruling out potential nonbiological sources. While such evidence could be found in our lifetime, it is less likely to be a eureka moment and more a slow build requiring a consensus among astronomers, physicists, biologists and chemists. 'We have never reached that level of evidence in any of our studies,' Madhusudhan wrote in an email. 'We have only found evidence at or below 3-sigma in our two previous studies (Madhusudhan et al. 2023 and 2025). We refer to this as moderate evidence or hints but not a strong detection. I agree with (Luque and Zhang's) claim which is consistent with our study and we have discussed the need for stronger evidence extensively in our study and communications.' In response to the research conducted by Welbanks' team, Madhusudhan and his Cambridge colleagues have authored another manuscript expanding the search on K2-18b to include 650 types of molecules. They have submitted the new analysis for peer review. 'This is the largest search for chemical signatures in an exoplanet to date, using all the available data for K2-18b and searching through 650 molecules,' Madhusudhan said. 'We find that DMS continues to be a promising candidate molecule in this planet, though more observations are required for a firm detection as we have noted in our previous studies.' Welbanks and Nixon were pleased that Madhusudhan and his colleagues addressed the concerns raised but feel that the new paper effectively walks back central claims made in the original April study, Welbanks said. 'The new paper tacitly concedes that the DMS/DMDS detection was not robust, yet still relies on the same flawed statistical framework and a selective reading of its own results,' Welbanks said in an email. 'While the tone is more cautious (sometimes), the methodology continues to obscure the true level of uncertainty. The statistical significance claimed in earlier work was the product of arbitrary modeling decisions that are not acknowledged.' Luque said the Cambridge team's new paper is a step in the right direction because it explores other possible chemical biosignatures. 'But I think it fell short in the scope,' Luque said. 'I think it restricted itself too much into being a rebuttal to the (Welbanks) paper.' Separately, however, the astronomers studying K2-18b agree that pushing forward on researching the exoplanet contributes to the scientific process. 'I think it's just a good, healthy scientific discourse to talk about what is going on with this planet,' Welbanks said. 'Regardless of what any single author group says right now, we don't have a silver bullet. But that is exactly why this is exciting, because we know that we're the closest we have ever been (to finding a biosignature), and I think we may get it within our lifetime, but right now, we're not there. That is not a failure. We're testing bold ideas.'