logo
Paleontologists discover ‘moth-like' predator ‘the size of your index finger' that lived 506M years ago

Paleontologists discover ‘moth-like' predator ‘the size of your index finger' that lived 506M years ago

New York Post20-05-2025

Paleontologists recently discovered a 506-million-year-old 'moth-like' predator that lurked in prehistoric Canada.
In a press release from the Royal Ontario Museum (ROM), officials identified the creature as Mosura fentoni, an extinct arthropod, as news agencies including SWNS reported.
Advertisement
The museum reported that most of the Mosura fossils were collected by ROM paleontologists at Raymond Quarry in Yoho National Park in British Columbia.
Most were found between 1975 and 2022.
'Mosura fentoni was about the size of your index finger and had three eyes, spiny jointed claws, a circular mouth lined with teeth and a body with swimming flaps along its sides,' the museum noted.
'These traits show it to be part of an extinct group known as the radiodonts, which also included the famous Anomalocaris canadensis, a meter-long predator that shared the waters with Mosura.'
Advertisement
What makes the discovery so interesting to researchers is that Mosura had an abdomen-like body region made up of multiple segments at its back end – which had not been previously observed in any radiodonts.
3 Paleontologists recently discovered a 506-million-year-old 'moth-like' predator that lurked in prehistoric Canada.
Royal Ontario Museum
Joe Moysiuk, a curator of paleontology and geology at the Manitoba Museum, said Mosurahad 16 of these segments, all lined with gills.
'This is a neat example of evolutionary convergence with modern groups, like horseshoe crabs, woodlice and insects, which share a batch of segments bearing respiratory organs at the rear of the body,' Moysiuk described.
Advertisement
The museum reported that the species has been nicknamed the 'sea-moth' by field collectors based on its moth-like attributes.
3 Officials identified the creature as Mosura fentoni, an extinct arthropod.
Royal Ontario Museum
'This inspired its scientific name, which references the fictional Japanese kaiju also known as Mothra. Only distantly related to real moths – as well as spiders, crabs, and millipedes – Mosura belongs on a much deeper branch in the evolutionary tree of these animals, collectively known as arthropods,' the statement added.
Interestingly, the fossils show details of Mosura's internal anatomy – including its nervous system, circulatory system, and digestive tract.
Advertisement
Instead of arteries and veins, Mosura's heart pumped blood into large internal body cavities called lacunae.
3 Most of the Mosura fossils were collected by ROM paleontologists at Raymond Quarry in Yoho National Park in British Columbia.
VW Pics/Universal Images Group via Getty Images
ROM curator Jean-Bernard Caron said that 'few fossil sites in the world offer this level of insight into soft internal anatomy.'
'We can see traces representing bundles of nerves in the eyes that would have been involved in image processing, just like in living arthropods,' the expert added.
'The details are astounding.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?
Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?

Yahoo

time21 minutes ago

  • Yahoo

Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?

Venus has groupies—a family of asteroids that share its orbit, either trailing it or leading it as the planet revolves around the sun. Researchers have known that such stealthy space rocks might exist for years, but now, a pair of papers (one published in a journal, and one a pre-print undergoing peer-review) conclude that some might develop unstable orbits and, over a very long period of time, arch toward Earth. But despite what several histrionic headlines have claimed, Earth is not at risk of one of these asteroids suddenly sneaking up on us and vaporizing a city. While some of these asteroids could be large enough to cause this sort of damage, there is no evidence whatsoever suggesting any of these Venus-pursuing asteroids are currently heading our way. 'I wouldn't say that these objects are not dangerous,' says Valerio Carruba, an asteroid dynamicist at the São Paulo State University in Brazil and a co-author of both studies. 'But I don't think there is any reason to panic.' These studies simply highlight that asteroids near Venus have the potential to fly our way on sometime in the next few thousand years or so. 'The likelihood of one colliding with Earth any time soon is extremely low,' says Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington, D.C. who was not involved with the new research. 'There isn't too much to be worried about here.' The real problem, though, is that asteroids like this are remarkably difficult to find, and you can't protect yourself against a danger you cannot see. Fortunately, in the next few years, two of the most advanced observatories ever built are coming online. And together, they will find more asteroids—including those hiding near Venus—than the sum total already identified by the world's telescopes. While the Japanese and European space agencies mostly request time on busy telescopes to search for these space rocks, NASA leads the pack: It funds a network of observatories solely dedicated to finding sketchy-looking asteroids. Planetary defenders are chiefly concerned about near-Earth asteroids. As the name suggests, these have orbits that hew close to Earth's own. Many of these asteroids were removed from the largely stable belt between Mars and Jupiter, either through the chaotic gravitational pull of the planets (often Jupiter, as it's the most massive) or through asteroid-on-asteroid collisions. If one gets within 4.6 million miles of Earth's orbit, there's a chance that, over time, both orbits cross and a collision becomes possible. And if that asteroid is 460 feet long, it's big enough to plunge through the atmosphere and (with a direct hit) destroy a city. Combined, these characteristics describe 'potentially hazardous asteroids'—and finding them is of paramount importance. Asteroids are first found because of the sunlight they reflect. That works well for most, but there are known to be asteroids hiding interior to Earth's orbit, toward the direction of the sun. And that's a problem. Astronomers seeking out these asteroids cannot just point their telescopes directly at the sun: It would be like trying to see a lit match in front of a nuclear explosion. Instead, they look in the vicinity of the sun in the few minutes just after sunset, or just before sunrise. Not only are these surveys severely time-limited, but by aiming close to the horizon, they are peering through more of the Earth's atmosphere, which distorts what they are looking at. 'All of these factors make it hard to search for and discover asteroids near Venus' orbit,' says Sheppard. (Here's how researchers track asteroids that might hit Earth.) Asteroids have occasionally been spotted in this sun-bleached corner of space. And twenty of them have been found scooting along the same orbital highway Venus uses to orbit the sun. These are known as co-orbital asteroids; similar rocks can be found either following or trailing other planets, most notably Jupiter. Co-orbiting asteroids tend to cluster around several gravitationally stable sections, known as Lagrange points, along the planet's orbital path. But over a timescale of about 12,000 years or so, it's thought that the Venus co-orbital asteroids can dramatically alter their orbits. They remain on the same orbital path as Venus, but instead of maintaining a circular orbit, they get creative: Some migrate to a different Lagrange point, while others zip about in a horseshoe pattern around several Lagrange points. Some of these new, exotic orbits become quite stretched-out and elliptical—and, in some cases, these orbits can eventually bring these asteroids closer to Earth. When they do, 'there is a higher chance of a collision,' says Carruba. In their first study, published in the journal Icarus earlier this year, Carruba and his team looked at the 20 known co-orbital asteroids of Venus. Their simulations forecast how their orbits would evolve over time and show that three of the space rocks—each between 1,000 and 1,300 feet or so—could approach within 46,500 miles of Earth's orbit. (For reference, the moon is an average of 240,000 miles from our planet.) That proximity may make them potentially hazardous asteroids. But there's no need to worry—it can take as long as 12,000 years for an asteroid to end up on an elliptical, near-Earth orbit. Perhaps they will be a problem for our very, very distant descendants. The team's latest study, uploaded to the pre-print server arXiv last month, delves into how easy it might be for any of Venus' co-orbital asteroids—including those astronomers have yet to find—to end up on these precarious orbits. To find out, they created virtual asteroids and simulated their many potential orbital voyages 36,000 years into the future. Many things could perturb the orbits of asteroids over that many years, so any truly accurate predictions are impossible. But the simulations came to some broad conclusions. The first is that a Venus co-orbital asteroid is more likely to approach Earth if it switches from a circular to a considerably elongated orbit—it's zooming over a larger patch of the inner solar system, including our own planet's neighborhood. The second, more surprising thing, is that some asteroids still manage to reach near-Earth space even they start out with only a mildly stretched-out orbit. It seems that their chaotic journeys through space, filled with gravitational disturbances, can still end up throwing them our way. But to be clear, these potentially worrisome orbits develop over the course of many millennia. 'This is not something to be alarmed about, as these asteroids are still relatively dynamically stable on human timescales,' says Sheppard. (These five asteroids pose the highest risk to Earth.) For Marco Fenucci, a near-Earth object dynamicist at the European Space Agency, the paper raises awareness about these relatively mysterious asteroids in Venus' orbit. And that is a good point to make, he adds: We don't know much about these asteroids, including their population size, their dimensions, and their orbits, because we struggle to find them with today's telescopes. Two upcoming facilities are about to make this task considerably easier. The first, the U.S.-owned Vera C. Rubin Observatory in Chile is set to officially come online in the next few weeks. With a huge field-of-view, it can see huge swathes of the night sky at once, and its giant nest of mirrors can gather so much starlight than even the smallest, faintest objects can be seen. In just three to six months, the observatory could find as many as a million new asteroids, effectively doubling the current total. Meg Schwamb, a planetary scientist at Queen's University Belfast who was not involved with the new research, explains that Rubin will also conduct its own twilight surveys, the very sort used today to search for near-Venus asteroids. If these surveys are conducted over the next decade, 'Rubin could find as many as 40 to 50 percent of all objects larger than about [1,150 feet] in the interior-to-Venus-orbit population,' says Mario Jurić, an astronomer at the University of Washington and who was not involved with the new research. But, as with all ground-based optical telescopes, Rubin will still have the sun's glare, and Earth's atmosphere, to contend with. As long as the federal government decides to continue to fund the mission—something that is not guaranteed—NASA will also launch a dedicated asteroid-hunting space observatory, the Near-Earth Object (NEO) Surveyor, in the next few years. Unobstructed by Earth's atmosphere, it will seek out space rocks by viewing them through a highly-sensitive infrared scope, meaning it can see those hidden by the luminous sun. Even those asteroids sneaking around near Venus won't be able to hide from NEO Surveyor. And, finally, says Carruba, 'we can see if the impact threat is real, or not.'

Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?
Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?

National Geographic

time37 minutes ago

  • National Geographic

Asteroids with ‘unstable orbits' hide around Venus—do they threaten Earth?

NASA's Parker Solar Probe captured this image showing the nightside surface of Venus. A family of asteroids share the planet's orbit, and two new studies suggest that one day the space rocks could theoretically pose a danger to Earth. Photograph by NASA/APL/NRL Venus has groupies—a family of asteroids that share its orbit, either trailing it or leading it as the planet revolves around the sun. Researchers have known that such stealthy space rocks might exist for years, but now, a pair of papers (one published in a journal, and one a pre-print undergoing peer-review) conclude that some might develop unstable orbits and, over a very long period of time, arch toward Earth. But despite what several histrionic headlines have claimed, Earth is not at risk of one of these asteroids suddenly sneaking up on us and vaporizing a city. While some of these asteroids could be large enough to cause this sort of damage, there is no evidence whatsoever suggesting any of these Venus-pursuing asteroids are currently heading our way. 'I wouldn't say that these objects are not dangerous,' says Valerio Carruba, an asteroid dynamicist at the São Paulo State University in Brazil and a co-author of both studies. 'But I don't think there is any reason to panic.' These studies simply highlight that asteroids near Venus have the potential to fly our way on sometime in the next few thousand years or so. 'The likelihood of one colliding with Earth any time soon is extremely low,' says Scott Sheppard, an astronomer at the Carnegie Institution for Science in Washington, D.C. who was not involved with the new research. 'There isn't too much to be worried about here.' Asteroids around Venus, shown in the background above during a 2012 transit, are difficult to track because they fall inside Earth's orbit and are obscured by the sun's glare. Research suggests that some of the asteroids that share Venus' orbit are large enough to take out a city on Earth. Illustration by David A. Hardy, Futures: 50 Years In Space/Science Photo Library The real problem, though, is that asteroids like this are remarkably difficult to find, and you can't protect yourself against a danger you cannot see. Fortunately, in the next few years, two of the most advanced observatories ever built are coming online. And together, they will find more asteroids—including those hiding near Venus—than the sum total already identified by the world's telescopes. Concealed by sunlight While the Japanese and European space agencies mostly request time on busy telescopes to search for these space rocks, NASA leads the pack: It funds a network of observatories solely dedicated to finding sketchy-looking asteroids. Planetary defenders are chiefly concerned about near-Earth asteroids. As the name suggests, these have orbits that hew close to Earth's own. Many of these asteroids were removed from the largely stable belt between Mars and Jupiter, either through the chaotic gravitational pull of the planets (often Jupiter, as it's the most massive) or through asteroid-on-asteroid collisions. If one gets within 4.6 million miles of Earth's orbit, there's a chance that, over time, both orbits cross and a collision becomes possible. And if that asteroid is 460 feet long, it's big enough to plunge through the atmosphere and (with a direct hit) destroy a city. Combined, these characteristics describe 'potentially hazardous asteroids'—and finding them is of paramount importance. Venus appears above giant sandstone cliffs amid the sand dunes of Tassili National Park in Algeria. Photograph by Babak Tafreshi, Nat Geo Image Collection Asteroids are first found because of the sunlight they reflect. That works well for most, but there are known to be asteroids hiding interior to Earth's orbit, toward the direction of the sun. And that's a problem. Astronomers seeking out these asteroids cannot just point their telescopes directly at the sun: It would be like trying to see a lit match in front of a nuclear explosion. Instead, they look in the vicinity of the sun in the few minutes just after sunset, or just before sunrise. Not only are these surveys severely time-limited, but by aiming close to the horizon, they are peering through more of the Earth's atmosphere, which distorts what they are looking at. 'All of these factors make it hard to search for and discover asteroids near Venus' orbit,' says Sheppard. (Here's how researchers track asteroids that might hit Earth.) The invisible Venusian fleet Asteroids have occasionally been spotted in this sun-bleached corner of space. And twenty of them have been found scooting along the same orbital highway Venus uses to orbit the sun. These are known as co-orbital asteroids; similar rocks can be found either following or trailing other planets, most notably Jupiter. Co-orbiting asteroids tend to cluster around several gravitationally stable sections, known as Lagrange points, along the planet's orbital path. But over a timescale of about 12,000 years or so, it's thought that the Venus co-orbital asteroids can dramatically alter their orbits. They remain on the same orbital path as Venus, but instead of maintaining a circular orbit, they get creative: Some migrate to a different Lagrange point, while others zip about in a horseshoe pattern around several Lagrange points. Some of these new, exotic orbits become quite stretched-out and elliptical—and, in some cases, these orbits can eventually bring these asteroids closer to Earth. When they do, 'there is a higher chance of a collision,' says Carruba. In their first study, published in the journal Icarus earlier this year, Carruba and his team looked at the 20 known co-orbital asteroids of Venus. Their simulations forecast how their orbits would evolve over time and show that three of the space rocks—each between 1,000 and 1,300 feet or so—could approach within 46,500 miles of Earth's orbit. (For reference, the moon is an average of 240,000 miles from our planet.) That proximity may make them potentially hazardous asteroids. But there's no need to worry—it can take as long as 12,000 years for an asteroid to end up on an elliptical, near-Earth orbit. Perhaps they will be a problem for our very, very distant descendants. The asteroids that hang out in the orbit of Venus (shown above in simulated color) are largely unknown. This illustration shows the orbits of the binary near-Earth asteroid Didymos (labelled) and another 2,200 potentially hazardous asteroids (fainter lines) around the sun. Illustration by NASA/JPL-Caltech/Science Photo Library The team's latest study, uploaded to the pre-print server arXiv last month, delves into how easy it might be for any of Venus' co-orbital asteroids—including those astronomers have yet to find—to end up on these precarious orbits. To find out, they created virtual asteroids and simulated their many potential orbital voyages 36,000 years into the future. Many things could perturb the orbits of asteroids over that many years, so any truly accurate predictions are impossible. But the simulations came to some broad conclusions. The first is that a Venus co-orbital asteroid is more likely to approach Earth if it switches from a circular to a considerably elongated orbit—it's zooming over a larger patch of the inner solar system, including our own planet's neighborhood. The second, more surprising thing, is that some asteroids still manage to reach near-Earth space even they start out with only a mildly stretched-out orbit. It seems that their chaotic journeys through space, filled with gravitational disturbances, can still end up throwing them our way. But to be clear, these potentially worrisome orbits develop over the course of many millennia. 'This is not something to be alarmed about, as these asteroids are still relatively dynamically stable on human timescales,' says Sheppard. (These five asteroids pose the highest risk to Earth.) A new asteroid-hunting dawn For Marco Fenucci, a near-Earth object dynamicist at the European Space Agency, the paper raises awareness about these relatively mysterious asteroids in Venus' orbit. And that is a good point to make, he adds: We don't know much about these asteroids, including their population size, their dimensions, and their orbits, because we struggle to find them with today's telescopes. Two upcoming facilities are about to make this task considerably easier. The first, the U.S.-owned Vera C. Rubin Observatory in Chile is set to officially come online in the next few weeks. With a huge field-of-view, it can see huge swathes of the night sky at once, and its giant nest of mirrors can gather so much starlight than even the smallest, faintest objects can be seen. In just three to six months, the observatory could find as many as a million new asteroids, effectively doubling the current total. Meg Schwamb, a planetary scientist at Queen's University Belfast who was not involved with the new research, explains that Rubin will also conduct its own twilight surveys, the very sort used today to search for near-Venus asteroids. If these surveys are conducted over the next decade, 'Rubin could find as many as 40 to 50 percent of all objects larger than about [1,150 feet] in the interior-to-Venus-orbit population,' says Mario Jurić, an astronomer at the University of Washington and who was not involved with the new research. But, as with all ground-based optical telescopes, Rubin will still have the sun's glare, and Earth's atmosphere, to contend with. As long as the federal government decides to continue to fund the mission—something that is not guaranteed—NASA will also launch a dedicated asteroid-hunting space observatory, the Near-Earth Object (NEO) Surveyor, in the next few years. Unobstructed by Earth's atmosphere, it will seek out space rocks by viewing them through a highly-sensitive infrared scope, meaning it can see those hidden by the luminous sun. Even those asteroids sneaking around near Venus won't be able to hide from NEO Surveyor. And, finally, says Carruba, 'we can see if the impact threat is real, or not.'

Private lunar lander closing in on unexplored top of the moon
Private lunar lander closing in on unexplored top of the moon

Yahoo

time2 hours ago

  • Yahoo

Private lunar lander closing in on unexplored top of the moon

Four-and-a-half months after launch atop a Falcon 9 rocket, a privately-built Japanese moon lander is finally in position for a descent to touchdown Thursday. It comes two years after the company's first lander ran out of gas and crashed to the lunar surface. The Resilience lander, carrying cameras, a few scientific instruments and a tiny rover, was expected to drop out of a 62-mile-high orbit and touch down at 3:17 p.m. EDT near the center of Mare Frigoris — the Sea of Cold — in the moon's northern hemisphere at 60 degrees north latitude. "For Mission 2, our second attempt at landing on the moon, we will not only land the Resilience lander, but we will also use a mechanism to deploy the Tenacious rover, which we developed in house, to explore the lunar surface," Ryo Ujiie, chief technology officer of ispace, the lander's builder, said on the company's web page. "Tenacious will explore the lunar surface, deploy a customer payload and collect regolith. Resilience will continue to operate the customer payloads on board and transmit valuable telemetry data to our mission control center." The customer payload is a tiny model of a Swedish house, designed by artist Mikael Genberg. The traditionally styled red-and-white house measures just 4.7 inches long and 4 inches high and weighs just 3.5 ounces. Asked why he took on the project, which required years of planning, fund-raising and engineering, Genberg said "we have done as human beings things from time to time that (do not) seemingly have a purpose beyond just being creative." "The Eiffel Tower, for instance, I mean it's a stupid thing to build," he said. "Today, it has a purpose as maybe the most important thing to make Paris the most visited city in the world." While the "moonhouse" will survive for thousands if not millions of years in the airless environment of the moon, its custom paint will fade in the sun's harsh radiation and lunar dust will slowly coat its surface. Genberg joked that he would happily await an invitation to repaint it. The house will be dropped from the rover a few days after landing, and the team hopes to capture photos with Earth in the background. The cost of the project was not disclosed, but a spokesman said it was similar to what one might pay for a relatively large house on Earth. ispace is one of a handful of companies attempting to provide non-government transportation services to the moon for a variety of payloads ranging from science instruments to technology demonstrations. But as it turns out, getting low-cost spacecraft to the moon's surface is extremely difficult. ispace tried and failed in 2023 when its first lander ran out of propellant nearing the surface, dropping to a "hard" crash landing. Pittsburgh-based Astrobotic Technology launched its Peregrine lander in January 2024, but the spacecraft suffered a propulsion system leak and never made it to the moon. Houston-based Intuitive Machines successfully put two landers down on the lunar surface in 2024 and again earlier this year, but both spacecraft tipped over on touchdown. While each one survived its landing, neither was able to accomplish all of its pre-flight objectives. Before Thursday, only one company, Austin-based Firefly Aerospace, had successfully touched down and carried out its mission, landing the Blue Ghost spacecraft on March 2, 53 years after the final Apollo mission. Resilience and Blue Ghost were launched atop a single SpaceX Falcon 9 rocket on Jan. 15. The Blue Ghost lander took a direct route to the moon and carried out a successful touchdown, operating for a full two-week lunar "day." Resilience followed a longer, low-energy trajectory that carried it well past its target, using the moon's gravity to bring it back to an initially elliptical orbit and finally, using its thrusters, to the 100-kilometer (62-mile) circular orbit that set the stage for descent. Sneak peek: Where is Jermain Charlo? Hegseth orders Navy to rename USNS Harvey Milk, Jeffries calls it "a complete and total disgrace" FEMA, Trump administration react to sources saying chief did not know U.S. had a hurricane season

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store