
Most energetic ‘ghost particle' from space detected in the deep ocean
Astronomers using a giant network of sensors, still under construction at the bottom of the Mediterranean Sea, have found the highest-energy cosmic 'ghost particle' ever detected.
The neutrino, as the particle is formally known, is 30 times more energetic than any of the few hundreds of previously detected neutrinos.
These tiny, high-energy particles from space are often referred to as 'ghostly' because they are extremely volatile, or vaporous, and can pass through any kind of matter without changing. Neutrinos, which arrive at Earth from the far reaches of the cosmos, have almost no mass. The particles travel through the most extreme environments, including stars, planets and entire galaxies, and yet their structure remains intact.
An analysis of the neutrino authored by the KM3NeT Collaboration, which includes more than 360 scientists from around the world, was published Wednesday in the journal Nature.
'Neutrinos … are special cosmic messengers, bringing us unique information on the mechanisms involved in the most energetic phenomena and allowing us to explore the farthest reaches of the Universe,' said study coauthor Rosa Coniglione, KM3NeT deputy spokesperson and researcher at Italy's INFN National Institute for Nuclear Physics, in a statement.
The record-breaking neutrino, named KM3-230213A, had the energy of 220 million billion electron volts. This astonishing amount makes it around 30,000 times more powerful than what the Large Hadron Collider particle accelerator at the European Organization for Nuclear Research (CERN) near Geneva, Switzerland — known for supercharging particles to nearly the speed of light — is capable of, according to the study authors.
'One way I like to think about it is that the energy of this single neutrino is equivalent to the energy released by splitting not one uranium atom, or ten such atoms, or even a million of them,' said study coauthor Dr. Brad K. Gibson in an email. 'This one little neutrino had as much energy as the energy released by splitting one billion uranium atoms … a mind-boggling number when we compare the energies of our nuclear fission reactors with this one single ethereal neutrino.'
The particle provides some of the first evidence that such highly energetic neutrinos can be created in the universe. The team believes the neutrino came from beyond the Milky Way galaxy, but they have yet to identify its exact origin point, which raises the question of what created the neutrino and sent it flying across the cosmos in the first place — perhaps an extreme environment such as a supermassive black hole, gamma ray burst or supernova remnant.
The groundbreaking detection is opening up a new chapter of neutrino astronomy, as well as a new observational window into the universe, said study coauthor Paschal Coyle, KM3NeT spokesperson and researcher at the Centre National de la Recherche Scientifique – Centre de Physique des Particules de Marseille in France.
'KM3NeT has begun to probe a range of energy and sensitivity where detected neutrinos may originate from extreme astrophysical phenomena,' Coyle said.
A light in the ocean
Neutrinos are difficult to detect because they don't often interact with their surroundings — but they do interact with ice and water. When neutrinos interact directly with the detectors, they radiate a bluish light that can be picked up by a nearby network of digital optical sensors embedded in ice or floating in water.
For example, the IceCube Neutrino Observatory at the South Pole includes a grid of more than 5,000 sensors embedded in the Antarctic ice. The detector has been operating since 2011, and has discovered hundreds of neutrinos. Scientists have been able to trace some of them back to their cosmic sources, such as a blazar or the bright core of an active galaxy.
An international team conceived the idea of a network of detectors in the early 2010s — known as the Cubic Kilometre Neutrino Telescope, or KM3NeT — that might be able to pick up neutrinos in the deep ocean. Installation of the network began in 2015.
The KM3NeT made the record-breaking detection on February 13, 2023, when the particle lit up one of its two detectors. ARCA, or the Astroparticle Research with Cosmics in the Abyss, rests at a depth of 11,319 feet (3,450 meters), while ORCA, or Oscillation Research with Cosmics in the Abyss, is at a depth of 8,038 feet (2,450 meters) at the bottom of the Mediterranean Sea.
The ARCA detector, off the Sicilian coast near Capo Passero, Italy, was designed to pick up on high-energy neutrinos, while ORCA, near Toulon in southeastern France, is dedicated to the search for low-energy neutrinos.
The KM3NeT, which includes a grid of sensors anchored to the seabed, remains under construction. But enough detectors were in place to pick up on the high-energy neutrino, the study authors said.
The ARCA detector was operating with just 10% of its planned components in place when the particle traced a nearly horizonal path through the entire telescope, setting off signals in more than one-third of the active sensors. The detector recorded over 28,000 photons of light produced by the charged particle.
Mysterious, powerful origins
If the energy within the neutrino was converted for our understanding of everyday objects, it would amount to 0.04 joules, or the energy of a ping-pong ball dropped from a height of 3.28 feet (1 meter), said study coauthor Aart Heijboer, physics coordinator of KM3NeT and professor at the Dutch National Institute for Subatomic Physics, or NIKHEF, and University of Amsterdam in the Netherlands.
That amount could power a small LED light for about 1 second, he said.
'So it is not a large amount of energy for every-day objects, but the fact that such an analogy with the every-day world is even possible is remarkable in itself. All this energy was contained in one single, elementary particle,' Heijboer said in an email.
On a particle scale, the neutrino was considered ultra-energetic, with roughly 1 billion times 100 million times the energy of visible light photons, according to the study authors.
Detecting neutrinos on Earth allows researchers to trace them back to their sources. Understanding where these particles come from could reveal more about the origin of mysterious cosmic rays, long thought to be the primary source of neutrinos when the rays strike Earth's atmosphere.
The most highly energetic particles in the universe, cosmic rays bombard Earth from space. These rays are mostly made up of protons or atomic nuclei, and they are unleashed across the universe because whatever produces them is such a powerful particle accelerator that it dwarfs the capabilities of the Large Hadron Collider. Neutrinos could inform astronomers about where cosmic rays come from and what launches them across the universe.
Researchers believe something powerful unleashed the newly found neutrino, such as a gamma-ray burst or the interaction of cosmic rays with photons from the cosmic microwave background, which is leftover radiation from the big bang 13.8 billion years ago.
During the study, the authors also identified 12 potential blazars that may be responsible for creating the neutrino. The blazars are compatible with the estimated direction the particle traveled from, based on data collected by the detectors and cross-referenced data from gamma-ray, X-ray and radio telescopes. But more research is needed.
'Many cosmic-neutrino detections fail to show strong correlations with catalogued objects, perhaps indicating source populations that are very distant from Earth, or hinting at an as-yet-undiscovered type of astrophysical object,' said Erik K. Blaufuss, research scientist and particle astrophysicist in the department of physics at the University of Maryland, College Park, in an accompanying article. Blaufuss was not involved in the study.
'Although a full understanding of the origins of this event will take time, it remains an extraordinary welcome message for KM3NeT,' he said.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
a day ago
- Yahoo
Protect LIGO's science and local impact from Trump's budget cuts
The Trump administration wants to slash funding for America's two Laser Interferometer Gravitational-wave Observatories (LIGOs) as part of broader cuts to the National Science Foundation. That would be a devastating blow to the nation's global leadership in scientific research. When Congress writes its fiscal 2026 budget, it should ignore the president's anti-science request. One of the LIGO sites is on the Hanford nuclear site. The other is in Louisiana. The White House proposes cutting 40% of their funding – $48 million to $29 million. And it also dictates how that cut should be made. It wants one of the two sites shut down. Given that Washington is a blue state that is participating in multiple lawsuits against the Trump administration and Louisiana is a red state that voted for the president, the odds of LIGO Hanford surviving seem low. Either way, scientists' ability to explore the universe by detecting gravitational waves would suffer significantly. Shutting one site down would compromise scientists' ability to verify detections of cosmic events and weed out false readings originating from local disturbances. It also would prevent the two sites from triangulating where an event occurred in the sky, allowing telescopes that rely on light for observations to also find and research them. The two LIGOs work in tandem. In 2015, the Hanford observatory and its sibling in Louisiana detected gravitational waves for the first time when they measured the ripple in space-time caused by two black holes merging 1.4 billion light-years away. The findings provided fresh confirmation of Albert Einstein's theory of general relativity and earned researchers a Nobel Prize in physics. Since then, LIGO has detected hundreds of events, including black holes merging and neutron stars colliding. The Hanford site continues to refine its tools and push science forward. An upgrade a couple of years ago installed quantum squeezing technology that allows scientists to detect 60% more events and probe a larger volume of space. If funded, the observatories will continue to help humanity answer profound questions about the universe. Projects like LIGO are expensive. The National Science Foundation has spent more than $1 billion on detecting gravitational waves over four decades. At the start, skeptics deemed it risky, but it has provided tremendous return on investment. It epitomizes the sort of Big Science research that few institutions other than governments can afford. Think Europe's Large Hadron Collider, the Manhattan Project and the international Human Genome Project. Undercutting LIGO as it reaches its full potential and produces its most impressive results just to save a few million dollars would be a colossal mistake. As one commenter on the Tri-City Herald's website put it, 'It would be like inventing the microscope, seeing a cell for the first time, and then discarding it.' The best is yet to come. Even if a future administration were to restore funding, rehiring skilled researchers would be a monumental hurdle. A temporary shutdown will delay scientific progress and result in America losing ground to international researchers. LIGO has a local impact, too, and not just that it is visible from outer space. Its presence helps the Tri-Cities and the Hanford nuclear site evolve their scientific narrative from Cold War-era nuclear development to 21st-century astrophysics. It is a symbol of progress, diversification and positive global contribution that is invaluable for regional identity and attracting future talent and investment. LIGO staff go the extra mile by working with local STEM (science, technology, engineering and mathematics) students. They speak in classrooms about science careers and explain the complex workings of the observatory in a way that young people can understand. An $8 million LIGO Exploration Center, which opened in 2022 and was funded by Washington state, further enhances that public-facing mission. Such direct engagement cultivates future STEM talent and inspires the next generation of scientists and engineers. The proposed cuts to LIGO would lead to an irreversible loss of U.S. leadership in gravitational wave astronomy and an immense loss to the Tri-Cities. The Trump administration must reconsider. If it does not, Washington's congressional delegation must convince their colleagues to preserve this cornerstone of American scientific preeminence.


Forbes
3 days ago
- Forbes
Why The ‘Strawberry Moon' Will Be Lowest Until 2043 — And How To Photograph It
Tuesday's full strawberry moon occurs during two-year period known as the 'major lunar standstill" ... More or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. The full moon is seen here rising behind Stonehenge in England. (Photo by) The full strawberry moon will put on a dramatic show at moonrise on Tuesday, June 10 — low, luminous, and colored orange as it climbs into the southeastern sky. Get to an observing location that looks southeast — preferably low to the horizon — and at the specific time of moonrise where you are (during dusk), you'll see the red-orange orb rise before your eyes. Seen from the Northern Hemisphere, the full moon will rise far to the southeast, move across the sky close to the southern horizon, and set in the southwest close to dawn. It's happening because we're in the midst of a rare two-year period known as the 'major lunar standstill" or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. Earth's axis is tilted by 23.5 degrees with respect to the ecliptic, the path of the sun through the daytime sky, and, in effect, the plane of the solar system. That's what gives us seasons, and that's why planets are always found close to the ecliptic (hence the misused "planetary alignment" claims despite planets always being somewhat aligned with each other). The moon's orbit crosses the ecliptic twice each month, and when those crossings align with a new or full moon, eclipses can occur — hence the shared root in the words 'ecliptic' and 'eclipse.' While the sun's rise and set points vary throughout the year, changing by 47 degrees — and reaching the extreme points at the solstices — the moon's range is bigger, with that 5-degree tilt giving its rise and set points a 70-degree range near a major standstill, according to Griffith Observatory. Mount Coot-tha Lookout, Brisbane A major lunar standstill is a period when the northernmost and southernmost moonrise and moonset are furthest apart. Unlike a solstice (Latin for "sun stand still"), which lasts for one day, a major lunar standstill lasts for two years. These events are most noticeable during a full moon. Essentially, the swiveling and shifting orbit of the moon — a consequence of the sun's gravitational pull — is tilted at its maximum angle relative to the ecliptic. Every 18.6 years, the tilts combine to cause the moon to rise and set as much as 28.5° north or south of due east and west, respectively. Most people won't notice the major lunar standstill, but if you regularly watch the full moon rise from a particular place, go there — you'll get a shock when the moon rises at an extreme position much farther from where you might imagine it will rise. Imaging a full moon using a smartphone isn't easy, but it is possible to capture something special. First, switch off your flash and turn on HDR mode (if available) to better capture both the moon and the landscape as the light fades during dusk. Don't zoom in because digital zoom only blurs the details. Instead, frame the moon within a landscape for more impact, which is especially effective during this month's unusually far-southeast moonrise. If you use a manual photography app, stick to an ISO of 100 for a clean shot and experiment with slower (but not too slow) shutter speeds. A tripod will help, especially when using slow shutter speeds. However, if you don't have one, you can balance your phone on a wall or ledge. The key is to image it when it's low on the horizon and glowing orange. You've got a short window to capture that color, even with this low-hanging full moon, which will turn bright white as it lifts above the horizon. Wishing you clear skies and wide eyes.
Yahoo
3 days ago
- Yahoo
Resilience, a Private Japanese Spacecraft, Crash-Landed on the Moon
A Japanese spacecraft has probably crashed on the Moon, the second failed landing attempt for Tokyo-based private firm ispace. The HAKUTO-R Mission 2 (M2) lander — also called Resilience — began its landing sequence from a 100-kilometre-altitude orbit at 3.13am local time on 5 June. The craft was due to land near the centre of Mare Frigoris (Sea of Cold) at 4.17am. The ispace team said at a press conference that it lost contact with M2 when the craft was 192 metres above the Moon's surface and descending faster than expected. An attempt to reboot M2 was also unsuccessful. [Sign up for Today in Science, a free daily newsletter] M2 didn't receive measurements of the distance between itself and the lunar surface in time to slow down and reach its correct landing speed, the team said. 'It eventually slowed down, but not softly enough,' says Clive Neal, who studies the Moon at the University of Notre Dame in Indianapolis, US. He speculates that the failure was probably caused by a systems issue that wasn't identified and addressed during the M1 landing attempt. 'It's something that I believe will definitely be fixable, because getting that close means there's a few tweaks that are going to be needed for the next one,' he adds. If M2 had successfully landed on the lunar surface, the mission would have been the second time a commercial company had achieved the feat and a first for a non-US company. ispace's Mission 1 (M1) probably crashed during a landing attempt in April 2023. Lunar landings are challenging. When M1 crashed, Ryo Ujiie, ispace's chief technology officer said the telemetry — which collects data on the craft's altitude and speed — estimated that M1 was on the surface when it wasn't, causing the lander to free fall. Speaking to Nature last week, Ujiie said the company had addressed the telemetry issue with M2 and modified its software. 'We also carefully selected how to approach the landing site,' he added. Had M2 landed successfully, the craft would have supplied electricity for its cargo, including water electrolyzing equipment and a module for food production experiments — developed by Japan-based Takasago Thermal Engineering and biotechnology firm Euglena. A deep space radiation probe made by Taiwan's National Central University, and the 54-centimetre Tenacious rover were also be on board. The rover, created by ispace's European subsidiary in Luxemburg, was going to be released from the lander to collect imagery, location data and lunar sand known as regolith. Tenacious also carries a small red house made by Swedish artist Mikael Genberg. The craft launched on 15 January from Cape Canaveral, Florida, onboard a SpaceX Falcon 9 rocket. The rocket was also carrying the Blue Ghost Moon lander — developed by Firefly Aerospace, an aerospace firm based in Texas — which landed on the Moon on 2 March. M2 took a longer path to the moon than Blue Ghost, performing a lunar flyby on 15 February and spending two months in a low-energy transfer orbit before entering lunar orbit on 7 May. Ujiie says the path was slower because it was a low-energy trajectory, meaning that less fuel was used to move between Earth and lunar orbit. Richard de Grijs, an astronomer at Macquarie University in Sydney, Australia, says there will likely be more private companies trying to land their own crafts on the Moon. 'It seems that the big government players like NASA are quite keen to partner with commercial companies,' he says, because they can develop and launch crafts more cheaply than government bodies. He also expects that more missions will be launched in clusters, like the launch of M2 and Blue Ghost. This article is reproduced with permission and was first published on June 6, 2025.