logo
#

Latest news with #RichardBuggs

Hope for Britain's ash trees as study finds resistance evolving to killer fungus
Hope for Britain's ash trees as study finds resistance evolving to killer fungus

South Wales Guardian

time5 hours ago

  • Health
  • South Wales Guardian

Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Researchers from the Royal Botanic Gardens, Kew, and Queen Mary University of London say they have discovered a new generation of young ash trees in the wild which are showing greater resistance to the fungus compared to older trees. The findings from the study focused on Marden Park wood in Surrey, a semi-natural ancient woodland dominated by ash, which is a species that produces a large number of seedlings from each adult. It could mean ash does not go the same way as elms, which have been largely lost from the British landscape as a result of Dutch elm disease, the scientists said – although breeding programmes may be needed to bolster the fightback. Ash dieback, which was first seen in the UK in 2012, causes leaf loss and crown dieback and can lead to tree death, with fears it could wipe out up to 85% of Britain's native ash trees, as they have not evolved natural defences against the fungus originally from Asia. But now researchers suggest that natural selection in the wild is taking place on thousands of locations within ash tree DNA, driving increased resistance to the disease. The study compared the DNA of ash trees established before and after the fungus arrived in Britain, and found shifts in variants associated with tree health in thousands of places across the overall genome of the trees. This indicates the younger generation of trees has greater resistance to the fungus – as well as showing natural selection for a trait being influenced by multiple genes, which the researchers said was a phenomenon that was widely assumed but difficult to prove. Their study in the journal Science said natural selection could be occurring partly due to reduced seed or pollen production by adult trees damaged by ash dieback, and partly through the rapid death of young trees infected by the fungus and so are not present in the wood. But they cautioned that it was not yet known whether the rate of change would be enough to rescue the plants naturally, or whether there was enough genetic variation in ash trees to lead to a fully resistant tree. The findings could be used to support breeding programmes that aim to make European ash trees resilient to the disease, they added. Study author Dr Carey Metheringham, from Kew and Queen Mary, said: 'Thanks to natural selection, future generations of ash should have a better chance of withstanding infection. 'However, natural selection alone may not be enough to produce fully resistant trees. 'The existing genetic variation in the ash population may be too low, and as the trees become scarcer, the rate of selection could slow. 'Human intervention, such as selective breeding and the protection of young trees from deer grazing, may be required to accelerate evolutionary change.' Another of the study's authors, Professor Richard Buggs, from Kew and Queen Mary, said: 'We are so glad that these findings suggest that ash will not go the way of the elm in Britain. 'Elm trees have struggled to evolve to Dutch elm disease, but ash are showing a very different dynamic because they produce an abundance of seedlings upon which natural selection can act when they are still young. 'Through the death of millions of ash trees, a more resistant population of ash is appearing.' Rebecca Gosling, from the Woodland Trust which owns and manages Marden Park wood, said: 'Ash dieback demonstrates how devastating introduced pathogens can be for our trees and the species which rely upon them. 'This important research gives us hope for the future of our ash populations.' She added: 'The findings highlight how vital it is to support natural regeneration in woodlands, furthering our understanding of how to best manage our ash woodlands.' The study was mainly funded by the Environment Department (Defra) whose chief plant health officer Professor Nicola Spence said it demonstrated that tolerance to ash dieback can be inherited, and breeding programmes and natural regeneration together could secure the future of native ash.

Shoots of hope for Britain's cherished ash trees
Shoots of hope for Britain's cherished ash trees

Yahoo

time8 hours ago

  • Health
  • Yahoo

Shoots of hope for Britain's cherished ash trees

Ash trees are fighting back against a disease that has ravaged the British countryside, new scientific evidence shows. When ash dieback arrived in 2012, predictions suggested up to 85% of ash trees could be lost. But now scientists have discovered that ash woodlands are naturally evolving greater resistance to the infection. The discovery offers renewed hope that the much-loved trees will survive in the British landscape. "It is hope born out of the death of a lot of trees," said Prof Richard Buggs of the Royal Botanic Gardens Kew, and Queen Mary University of London. But he said other interventions would be needed to give ash trees a helping hand, such as protecting trees from grazing deer and breeding the most resilient trees for future planting schemes. "We have fresh motivation to look after our ash populations, to protect them from other problems like deer browsing, and to let nature take its course and evolve trees with more resistance," he told BBC News. The Ash dieback fungus originated in Asia and was introduced to Europe about 30 years ago. The study of ash trees at a woodland in Surrey revealed subtle shifts over time in different genes, which should help new saplings fight back against it. The trees are evolving greater resistance to the disease than their predecessors - an example of Charles Darwin's natural selection theory in action. Richard Nichols, professor of evolutionary genetics at Queen Mary University of London, said a "tragedy for the trees has been a revelation for scientists: allowing us to show that thousands of genes are contributing to the ash trees' fightback against the fungus". Ash dieback demonstrates how devastating introduced pathogens can be for our trees and the species which rely upon them, said Rebecca Gosling of the Woodland Trust. "The findings highlight how vital it is to support natural regeneration in woodlands, furthering our understanding of how to best manage our ash woodlands," she said. Scientists had feared the ash would go the way of the elm, which has been almost wiped out by Dutch elm disease. The loss of the native tree would have a devastating effect on biodiversity as well as changing the face of the landscape. Since its arrival in Britain in 2012, ash dieback has spread to every corner of the British Isles, causing widespread damage to woodlands. Ash fungus genetic code unravelled Alarm call as world's trees slide towards extinction Ash tree set for extinction in Europe Signs of the disease can be seen through withered and blighted leaves. In many cases the fungal disease will eventually kill the tree. The research is published in the journal, Science.

Hope for Britain's ash trees as study finds resistance evolving to killer fungus
Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Leader Live

time9 hours ago

  • Health
  • Leader Live

Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Researchers from the Royal Botanic Gardens, Kew, and Queen Mary University of London say they have discovered a new generation of young ash trees in the wild which are showing greater resistance to the fungus compared to older trees. The findings from the study focused on Marden Park wood in Surrey, a semi-natural ancient woodland dominated by ash, which is a species that produces a large number of seedlings from each adult. It could mean ash does not go the same way as elms, which have been largely lost from the British landscape as a result of Dutch elm disease, the scientists said – although breeding programmes may be needed to bolster the fightback. Ash dieback, which was first seen in the UK in 2012, causes leaf loss and crown dieback and can lead to tree death, with fears it could wipe out up to 85% of Britain's native ash trees, as they have not evolved natural defences against the fungus originally from Asia. But now researchers suggest that natural selection in the wild is taking place on thousands of locations within ash tree DNA, driving increased resistance to the disease. The study compared the DNA of ash trees established before and after the fungus arrived in Britain, and found shifts in variants associated with tree health in thousands of places across the overall genome of the trees. This indicates the younger generation of trees has greater resistance to the fungus – as well as showing natural selection for a trait being influenced by multiple genes, which the researchers said was a phenomenon that was widely assumed but difficult to prove. Their study in the journal Science said natural selection could be occurring partly due to reduced seed or pollen production by adult trees damaged by ash dieback, and partly through the rapid death of young trees infected by the fungus and so are not present in the wood. But they cautioned that it was not yet known whether the rate of change would be enough to rescue the plants naturally, or whether there was enough genetic variation in ash trees to lead to a fully resistant tree. The findings could be used to support breeding programmes that aim to make European ash trees resilient to the disease, they added. Study author Dr Carey Metheringham, from Kew and Queen Mary, said: 'Thanks to natural selection, future generations of ash should have a better chance of withstanding infection. 'However, natural selection alone may not be enough to produce fully resistant trees. 'The existing genetic variation in the ash population may be too low, and as the trees become scarcer, the rate of selection could slow. 'Human intervention, such as selective breeding and the protection of young trees from deer grazing, may be required to accelerate evolutionary change.' Another of the study's authors, Professor Richard Buggs, from Kew and Queen Mary, said: 'We are so glad that these findings suggest that ash will not go the way of the elm in Britain. 'Elm trees have struggled to evolve to Dutch elm disease, but ash are showing a very different dynamic because they produce an abundance of seedlings upon which natural selection can act when they are still young. 'Through the death of millions of ash trees, a more resistant population of ash is appearing.' Rebecca Gosling, from the Woodland Trust which owns and manages Marden Park wood, said: 'Ash dieback demonstrates how devastating introduced pathogens can be for our trees and the species which rely upon them. 'This important research gives us hope for the future of our ash populations.' She added: 'The findings highlight how vital it is to support natural regeneration in woodlands, furthering our understanding of how to best manage our ash woodlands.' The study was mainly funded by the Environment Department (Defra) whose chief plant health officer Professor Nicola Spence said it demonstrated that tolerance to ash dieback can be inherited, and breeding programmes and natural regeneration together could secure the future of native ash.

Hope for Britain's ash trees as study finds resistance evolving to killer fungus
Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Rhyl Journal

time14 hours ago

  • Health
  • Rhyl Journal

Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Researchers from the Royal Botanic Gardens, Kew, and Queen Mary University of London say they have discovered a new generation of young ash trees in the wild which are showing greater resistance to the fungus compared to older trees. The findings from the study focused on Marden Park wood in Surrey, a semi-natural ancient woodland dominated by ash, which is a species that produces a large number of seedlings from each adult. It could mean ash does not go the same way as elms, which have been largely lost from the British landscape as a result of Dutch elm disease, the scientists said – although breeding programmes may be needed to bolster the fightback. Ash dieback, which was first seen in the UK in 2012, causes leaf loss and crown dieback and can lead to tree death, with fears it could wipe out up to 85% of Britain's native ash trees, as they have not evolved natural defences against the fungus originally from Asia. But now researchers suggest that natural selection in the wild is taking place on thousands of locations within ash tree DNA, driving increased resistance to the disease. The study compared the DNA of ash trees established before and after the fungus arrived in Britain, and found shifts in variants associated with tree health in thousands of places across the overall genome of the trees. This indicates the younger generation of trees has greater resistance to the fungus – as well as showing natural selection for a trait being influenced by multiple genes, which the researchers said was a phenomenon that was widely assumed but difficult to prove. Their study in the journal Science said natural selection could be occurring partly due to reduced seed or pollen production by adult trees damaged by ash dieback, and partly through the rapid death of young trees infected by the fungus and so are not present in the wood. But they cautioned that it was not yet known whether the rate of change would be enough to rescue the plants naturally, or whether there was enough genetic variation in ash trees to lead to a fully resistant tree. The findings could be used to support breeding programmes that aim to make European ash trees resilient to the disease, they added. Study author Dr Carey Metheringham, from Kew and Queen Mary, said: 'Thanks to natural selection, future generations of ash should have a better chance of withstanding infection. 'However, natural selection alone may not be enough to produce fully resistant trees. 'The existing genetic variation in the ash population may be too low, and as the trees become scarcer, the rate of selection could slow. 'Human intervention, such as selective breeding and the protection of young trees from deer grazing, may be required to accelerate evolutionary change.' Another of the study's authors, Professor Richard Buggs, from Kew and Queen Mary, said: 'We are so glad that these findings suggest that ash will not go the way of the elm in Britain. 'Elm trees have struggled to evolve to Dutch elm disease, but ash are showing a very different dynamic because they produce an abundance of seedlings upon which natural selection can act when they are still young. 'Through the death of millions of ash trees, a more resistant population of ash is appearing.' Rebecca Gosling, from the Woodland Trust which owns and manages Marden Park wood, said: 'Ash dieback demonstrates how devastating introduced pathogens can be for our trees and the species which rely upon them. 'This important research gives us hope for the future of our ash populations.' She added: 'The findings highlight how vital it is to support natural regeneration in woodlands, furthering our understanding of how to best manage our ash woodlands.' The study was mainly funded by the Environment Department (Defra) whose chief plant health officer Professor Nicola Spence said it demonstrated that tolerance to ash dieback can be inherited, and breeding programmes and natural regeneration together could secure the future of native ash.

Hope for Britain's ash trees as study finds resistance evolving to killer fungus
Hope for Britain's ash trees as study finds resistance evolving to killer fungus

North Wales Chronicle

time16 hours ago

  • Health
  • North Wales Chronicle

Hope for Britain's ash trees as study finds resistance evolving to killer fungus

Researchers from the Royal Botanic Gardens, Kew, and Queen Mary University of London say they have discovered a new generation of young ash trees in the wild which are showing greater resistance to the fungus compared to older trees. The findings from the study focused on Marden Park wood in Surrey, a semi-natural ancient woodland dominated by ash, which is a species that produces a large number of seedlings from each adult. It could mean ash does not go the same way as elms, which have been largely lost from the British landscape as a result of Dutch elm disease, the scientists said – although breeding programmes may be needed to bolster the fightback. Ash dieback, which was first seen in the UK in 2012, causes leaf loss and crown dieback and can lead to tree death, with fears it could wipe out up to 85% of Britain's native ash trees, as they have not evolved natural defences against the fungus originally from Asia. But now researchers suggest that natural selection in the wild is taking place on thousands of locations within ash tree DNA, driving increased resistance to the disease. The study compared the DNA of ash trees established before and after the fungus arrived in Britain, and found shifts in variants associated with tree health in thousands of places across the overall genome of the trees. This indicates the younger generation of trees has greater resistance to the fungus – as well as showing natural selection for a trait being influenced by multiple genes, which the researchers said was a phenomenon that was widely assumed but difficult to prove. Their study in the journal Science said natural selection could be occurring partly due to reduced seed or pollen production by adult trees damaged by ash dieback, and partly through the rapid death of young trees infected by the fungus and so are not present in the wood. But they cautioned that it was not yet known whether the rate of change would be enough to rescue the plants naturally, or whether there was enough genetic variation in ash trees to lead to a fully resistant tree. The findings could be used to support breeding programmes that aim to make European ash trees resilient to the disease, they added. Study author Dr Carey Metheringham, from Kew and Queen Mary, said: 'Thanks to natural selection, future generations of ash should have a better chance of withstanding infection. 'However, natural selection alone may not be enough to produce fully resistant trees. 'The existing genetic variation in the ash population may be too low, and as the trees become scarcer, the rate of selection could slow. 'Human intervention, such as selective breeding and the protection of young trees from deer grazing, may be required to accelerate evolutionary change.' Another of the study's authors, Professor Richard Buggs, from Kew and Queen Mary, said: 'We are so glad that these findings suggest that ash will not go the way of the elm in Britain. 'Elm trees have struggled to evolve to Dutch elm disease, but ash are showing a very different dynamic because they produce an abundance of seedlings upon which natural selection can act when they are still young. 'Through the death of millions of ash trees, a more resistant population of ash is appearing.' Rebecca Gosling, from the Woodland Trust which owns and manages Marden Park wood, said: 'Ash dieback demonstrates how devastating introduced pathogens can be for our trees and the species which rely upon them. 'This important research gives us hope for the future of our ash populations.' She added: 'The findings highlight how vital it is to support natural regeneration in woodlands, furthering our understanding of how to best manage our ash woodlands.' The study was mainly funded by the Environment Department (Defra) whose chief plant health officer Professor Nicola Spence said it demonstrated that tolerance to ash dieback can be inherited, and breeding programmes and natural regeneration together could secure the future of native ash.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store