Latest news with #SergeiBalashev


Economic Times
7 days ago
- Science
- Economic Times
First-ever cosmic duel caught: One galaxy blasted another in deep space battle 11 billion light-years away
A clash of titans Star formation Live Events Implications for galactic evolution What's next (You can now subscribe to our (You can now subscribe to our Economic Times WhatsApp channel Astronomers have, for the first time, captured a dramatic cosmic event: two galaxies engaged in a high-speed collision, aptly dubbed a "cosmic joust." This celestial spectacle, occurring over 11 billion light-years away, offers unprecedented insights into galaxy evolution and the influence of quasars on star formation Utilizing the combined capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Southern Observatory's Very Large Telescope (VLT) in Chile, researchers observed two massive galaxies hurtling toward each other at approximately 1.1 million miles per hour (1.8 million kilometers per hour). One of these galaxies harbors a quasar—a luminous, energetic core powered by a supermassive black hole—emitting intense radiation that pierces its galactic neighbor."Much like jousting knights charging toward one another, these galaxies are rapidly approaching," explained Pasquier Noterdaeme, co-lead of the study and researcher at the Paris Institute of Astrophysics and the French-Chilean Laboratory for Astronomy in Chile. "One of them—the quasar host—emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas."The quasar's ultraviolet radiation, about a thousand times stronger than that of our Milky Way , disrupts the molecular gas clouds in the companion galaxy. These clouds, typically the birthplaces of stars, are fragmented into tiny, dense cloudlets too small to initiate star formation."It's really the first time that we can see the radiative effect of a quasar on the molecular gas of a nearby galaxy," noted Sergei Balashev, co-author of the study and researcher at the Ioffe Institute in St. Petersburg, Russia. "Until now, this effect had only been theorized but not confirmed through direct observation."This cosmic encounter occurred when the universe was merely 2.4 billion years old, providing a rare window into the early stages of galaxy formation and interaction. The galaxies involved are similar in size to the Milky Way, each containing hundreds of billions of stars."Galaxies are typically found in groups, and gravitational ...," Noterdaeme said. "In line with current understanding, these ... The quasar will fade as it."The observation not only confirms long-standing theories about quasar influence on star formation but also underscores the dynamic and often violent nature of galaxy evolution. As galaxies merge, the influx of gas can fuel supermassive black holes, triggering quasar activity that, in turn, can suppress star formation in neighboring regions."This study provides the first direct evidence supporting long-standing theoretical models," said Neeraj Gupta, a researcher at the Inter-University Centre for Astronomy and Astrophysics (IUCAA) in Pune, India, who contributed to the the light from this event has taken over 11 billion years to reach us, the implications of this discovery are immediate, offering a deeper understanding of the complex interplay between galaxies and the forces that shape them. As astronomers continue to explore the cosmos, observations like this "cosmic joust" illuminate the intricate dance of creation and destruction that governs our universe.


Time of India
7 days ago
- Science
- Time of India
First-ever cosmic duel caught: One galaxy blasted another in deep space battle 11 billion light-years away
Astronomers have, for the first time, captured a dramatic cosmic event: two galaxies engaged in a high-speed collision, aptly dubbed a "cosmic joust." This celestial spectacle, occurring over 11 billion light-years away, offers unprecedented insights into galaxy evolution and the influence of quasars on star formation . A clash of titans Utilizing the combined capabilities of the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Southern Observatory's Very Large Telescope (VLT) in Chile, researchers observed two massive galaxies hurtling toward each other at approximately 1.1 million miles per hour (1.8 million kilometers per hour). One of these galaxies harbors a quasar—a luminous, energetic core powered by a supermassive black hole—emitting intense radiation that pierces its galactic neighbor. "Much like jousting knights charging toward one another, these galaxies are rapidly approaching," explained Pasquier Noterdaeme, co-lead of the study and researcher at the Paris Institute of Astrophysics and the French-Chilean Laboratory for Astronomy in Chile. "One of them—the quasar host—emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas." Star formation The quasar's ultraviolet radiation, about a thousand times stronger than that of our Milky Way , disrupts the molecular gas clouds in the companion galaxy. These clouds, typically the birthplaces of stars, are fragmented into tiny, dense cloudlets too small to initiate star formation. Live Events "It's really the first time that we can see the radiative effect of a quasar on the molecular gas of a nearby galaxy," noted Sergei Balashev, co-author of the study and researcher at the Ioffe Institute in St. Petersburg, Russia. "Until now, this effect had only been theorized but not confirmed through direct observation." This cosmic encounter occurred when the universe was merely 2.4 billion years old, providing a rare window into the early stages of galaxy formation and interaction. The galaxies involved are similar in size to the Milky Way, each containing hundreds of billions of stars. "Galaxies are typically found in groups, and gravitational ...," Noterdaeme said. "In line with current understanding, these ... The quasar will fade as it." Implications for galactic evolution The observation not only confirms long-standing theories about quasar influence on star formation but also underscores the dynamic and often violent nature of galaxy evolution. As galaxies merge, the influx of gas can fuel supermassive black holes, triggering quasar activity that, in turn, can suppress star formation in neighboring regions. "This study provides the first direct evidence supporting long-standing theoretical models," said Neeraj Gupta, a researcher at the Inter-University Centre for Astronomy and Astrophysics (IUCAA) in Pune, India, who contributed to the research. What's next While the light from this event has taken over 11 billion years to reach us, the implications of this discovery are immediate, offering a deeper understanding of the complex interplay between galaxies and the forces that shape them. As astronomers continue to explore the cosmos, observations like this "cosmic joust" illuminate the intricate dance of creation and destruction that governs our universe. Economic Times WhatsApp channel )

Ammon
22-05-2025
- Science
- Ammon
Two galaxies seen in a 'joust' preceding a cosmic mega-merger
Ammon News - Astronomers have observed two distant galaxies - both possessing roughly as many stars as our Milky Way - careening toward each other before their inevitable merger at a time when the universe was about a fifth its current age, a scene resembling two knights charging in a joust. The galaxies, observed using two Chile-based telescopes, were seen as they existed about 11.4 billion years ago, approximately 2.4 billion years after the Big Bang event that initiated the universe. At the heart of one of the galaxies resides a quasar, a highly luminous object powered by gas and other material falling into a supermassive black hole. The intense radiation across the electromagnetic spectrum unleashed by the quasar is seen disrupting clouds of gas and dust, known as molecular clouds, in the other galaxy. It is molecular clouds that give rise to stars. But the effects of the quasar's radiation turned the clouds in the affected region into "only tiny dense cloudlets that are too small to form stars," said astrophysicist Sergei Balashev of the Ioffe Institute in Saint Petersburg, Russia, co-lead author of the study published on Wednesday in the journal Nature, opens new tab. This is the first time such a phenomenon has been observed, Balashev said. Stars form by the slow contraction under gravity of these clouds, with small centers taking shape that heat up and become new stars. But the galaxy affected by the quasar's radiation was left with fewer regions that could serve as such stellar nurseries, undermining its star formation rate. The interaction between the two galaxies reminded the researchers of a medieval joust. "Much like jousting knights charging toward one another, these galaxies are rapidly approaching. One of them - the quasar host - emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas," said astronomer and co-lead author Pasquier Noterdaeme of the Paris Institute of Astrophysics in France. You might think that a mummified corpse would have a fairly unpleasant stink. Supermassive black holes are found at the heart of many galaxies, including the Milky Way. The researchers estimated the mass of the one that serves as the engine of the quasar studied in this research at about 200 million times that of our sun. The intense gravitational strength of the supermassive black hole pulls gas and other material toward it. As this stuff spirals inward at high speed, it heats up due to friction, forming a disk that emits extremely powerful radiation in two opposite directions, called biconical beams. The ultraviolet light from one of these beams is what played havoc with the gas in the companion galaxy. This supermassive black hole is much more massive than the one at the center of the Milky Way - called Sagittarius A*, or Sgr A* - which possesses roughly 4 million times the mass of the sun and is located about 26,000 light-years from Earth. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers used the Atacama Large Millimeter/submillimeter Array, or ALMA, to characterize the two galaxies and used the European Southern Observatory's Very Large Telescope, or VLT, to probe the quasar as well as the gas in the companion galaxy. The configuration of the galaxies as viewed from the perspective of Earth enabled the researchers to observe the radiation from the quasar passing directly through the companion galaxy. Most galactic mergers that have been observed by astronomers occurred later in the history of the universe. "Galaxies are typically found in groups, and gravitational interactions naturally lead to mergers over cosmic time," Noterdaeme said. "In line with current understanding, these two galaxies will eventually coalesce into a single larger galaxy. The quasar will fade as it exhausts the available fuel." Reuters


Korea Herald
22-05-2025
- Science
- Korea Herald
Two Galaxies in 'joust' before mega-merger
WASHINGTON (Reuters) — Astronomers have observed two distant galaxies — both possessing roughly as many stars as our Milky Way — careening toward each other before their inevitable merger at a time when the universe was about a fifth its current age, a scene resembling two knights charging in a joust. The galaxies, observed using two Chile-based telescopes, were seen as they existed about 11.4 billion years ago, approximately 2.4 billion years after the Big Bang event that initiated the universe. At the heart of one of the galaxies resides a quasar, a highly luminous object powered by gas and other material falling into a supermassive black hole. The intense radiation across the electromagnetic spectrum unleashed by the quasar is seen disrupting clouds of gas and dust, known as molecular clouds, in the other galaxy. It is molecular clouds that give rise to stars. But the effects of the quasar's radiation turned the clouds in the affected region into "only tiny dense cloudlets that are too small to form stars," said astrophysicist Sergei Balashev of the Ioffe Institute in Saint Petersburg, Russia, co-lead author of the study published on Wednesday in the journal Nature. This is the first time such a phenomenon has been observed, Balashev said. Stars form by the slow contraction under gravity of these clouds, with small centers taking shape that heat up and become new stars. But the galaxy affected by the quasar's radiation was left with fewer regions that could serve as such stellar nurseries, undermining its star formation rate. The interaction between the two galaxies reminded the researchers of a medieval joust. "Much like jousting knights charging toward one another, these galaxies are rapidly approaching. One of them — the quasar host — emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas," said astronomer and co-lead author Pasquier Noterdaeme of the Paris Institute of Astrophysics in France. Supermassive black holes are found at the heart of many galaxies, including the Milky Way. The researchers estimated the mass of the one that serves as the engine of the quasar studied in this research at about 200 million times that of our sun. The intense gravitational strength of the supermassive black hole pulls gas and other material toward it. As this stuff spirals inward at high speed, it heats up due to friction, forming a disk that emits extremely powerful radiation in two opposite directions, called biconical beams. The ultraviolet light from one of these beams is what played havoc with the gas in the companion galaxy. This supermassive black hole is much more massive than the one at the center of the Milky Way — called Sagittarius A*, or Sgr A* — which possesses roughly 4 million times the mass of the sun and is located about 26,000 light-years from Earth. A light-year is the distance light travels in a year, 9.5 trillion kilometers. The researchers used the Atacama Large Millimeter/submillimeter Array, or ALMA, to characterize the two galaxies and used the European Southern Observatory's Very Large Telescope, or VLT, to probe the quasar as well as the gas in the companion galaxy. The configuration of the galaxies as viewed from the perspective of Earth enabled the researchers to observe the radiation from the quasar passing directly through the companion galaxy. Most galactic mergers that have been observed by astronomers occurred later in the history of the universe. "Galaxies are typically found in groups, and gravitational interactions naturally lead to mergers over cosmic time," Noterdaeme said. "In line with current understanding, these two galaxies will eventually coalesce into a single larger galaxy. The quasar will fade as it exhausts the available fuel."


Reuters
21-05-2025
- Science
- Reuters
Two galaxies seen in a 'joust' preceding a cosmic mega-merger
WASHINGTON, May 21 (Reuters) - Astronomers have observed two distant galaxies - both possessing roughly as many stars as our Milky Way - careening toward each other before their inevitable merger at a time when the universe was about a fifth its current age, a scene resembling two knights charging in a joust. The galaxies, observed using two Chile-based telescopes, were seen as they existed about 11.4 billion years ago, approximately 2.4 billion years after the Big Bang event that initiated the universe. At the heart of one of the galaxies resides a quasar, a highly luminous object powered by gas and other material falling into a supermassive black hole. The intense radiation across the electromagnetic spectrum unleashed by the quasar is seen disrupting clouds of gas and dust, known as molecular clouds, in the other galaxy. It is molecular clouds that give rise to stars. But the effects of the quasar's radiation turned the clouds in the affected region into "only tiny dense cloudlets that are too small to form stars," said astrophysicist Sergei Balashev of the Ioffe Institute in Saint Petersburg, Russia, co-lead author of the study published on Wednesday in the journal Nature, opens new tab. This is the first time such a phenomenon has been observed, Balashev said. Stars form by the slow contraction under gravity of these clouds, with small centers taking shape that heat up and become new stars. But the galaxy affected by the quasar's radiation was left with fewer regions that could serve as such stellar nurseries, undermining its star formation rate. The interaction between the two galaxies reminded the researchers of a medieval joust. "Much like jousting knights charging toward one another, these galaxies are rapidly approaching. One of them - the quasar host - emits a powerful beam of radiation that pierces the companion galaxy, like a lance. This radiation 'wounds' its 'opponent' as it disrupts the gas," said astronomer and co-lead author Pasquier Noterdaeme of the Paris Institute of Astrophysics in France. Supermassive black holes are found at the heart of many galaxies, including the Milky Way. The researchers estimated the mass of the one that serves as the engine of the quasar studied in this research at about 200 million times that of our sun. The intense gravitational strength of the supermassive black hole pulls gas and other material toward it. As this stuff spirals inward at high speed, it heats up due to friction, forming a disk that emits extremely powerful radiation in two opposite directions, called biconical beams. The ultraviolet light from one of these beams is what played havoc with the gas in the companion galaxy. This supermassive black hole is much more massive than the one at the center of the Milky Way - called Sagittarius A*, or Sgr A* - which possesses roughly 4 million times the mass of the sun and is located about 26,000 light-years from Earth. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers used the Atacama Large Millimeter/submillimeter Array, or ALMA, to characterize the two galaxies and used the European Southern Observatory's Very Large Telescope, or VLT, to probe the quasar as well as the gas in the companion galaxy. The configuration of the galaxies as viewed from the perspective of Earth enabled the researchers to observe the radiation from the quasar passing directly through the companion galaxy. Most galactic mergers that have been observed by astronomers occurred later in the history of the universe. "Galaxies are typically found in groups, and gravitational interactions naturally lead to mergers over cosmic time," Noterdaeme said. "In line with current understanding, these two galaxies will eventually coalesce into a single larger galaxy. The quasar will fade as it exhausts the available fuel."