logo
#

Latest news with #ShapleySupercluster

Astronomers Uncover a Massive Shaft of Missing Matter
Astronomers Uncover a Massive Shaft of Missing Matter

Yahoo

timea day ago

  • Science
  • Yahoo

Astronomers Uncover a Massive Shaft of Missing Matter

Another clue about the whereabouts of the missing matter in the Universe has just emerged from amid the largest local cosmic structure. X-ray observations have revealed a massive filament of hot gas, measuring some 23 million light-years in length, in the space between four sub-clusters of galaxies in the enormous, 8,000-galaxy strong Shapley Supercluster. "For the first time, our results closely match what we see in our leading model of the cosmos – something that's not happened before," says astrophysicist Konstantinos Migkas of Leiden Observatory in the Netherlands. "It seems that the simulations were right all along." Most matter in the Universe comprises of a 'dark' variety we can't easily identify. Only around 15 percent of matter exists in the form of far more familiar protons, neutrons and electrons – what we might call 'normal matter'. We know more or less how much normal matter there was in the early Universe, just after the Big Bang, thanks to the Cosmic Microwave Background, the fossil radiation that propagated through space-time when the Universe became transparent. A huge problem arises when we compare that early Universe quantity of normal matter to the amount that's around now. All the stars, black holes, galaxies, planets, dust, gas, and everything else we can see only accounts for around half of what we'd expect to find. Matter can't be destroyed, so where the heck did it go? The best explanation we have is that it ended up in intergalactic space – vast amounts of material so tenuously distributed along the cosmic web that we can't directly see it. Increasing evidence of this faint reservoir has been emerging for the last few years; and the discovery of this filament is some of the best evidence yet. RELATED: Half The Universe's Matter Was Missing. Astronomers Just Found It. The cosmic web is a vast network of filaments of dark matter that span intergalactic space, connecting galaxies and acting as a "superhighway" along which galaxies and matter are funneled. We can't see these filaments easily, but Migkas and his team identified one by comparing observations from two X-ray telescopes. The now-retired Suzaku X-ray telescope was excellent for observing faint X-radiation that is spread over a large surface area, while XMM-Newton can pick out point sources of very bright X-rays. The researchers used existing images taken by the former to detect the glow of gas within the filament, while observations from the latter allowed them to remove contaminating X-rays from sources such as black holes. The resulting structure is a beast, stretching between two pairs of galaxy clusters named A3528S/N and A3530/32. Along its 23 million-light-year length, it contains enough material to fill 10 Milky Way galaxies, blazing at a temperature of more than 10 million degrees Celsius. It is, the researchers say, exactly what such a filament is expected to be, based on simulations of the Universe. "This research is a great example of collaboration between telescopes, and creates a new benchmark for how to spot the light coming from the faint filaments of the cosmic web," says astronomer and XMM-Newton project scientist Norbert Schartel of the European Space Agency. "More fundamentally, it reinforces our standard model of the cosmos and validates decades of simulations: it seems that the 'missing' matter may truly be lurking in hard-to-see threads woven across the Universe." The research has been published in Astronomy & Astrophysics. Our Galaxy's Monster Black Hole Is Spinning Almost as Fast as Physics Allows Did a Passing Star Cause Earth to Warm 56 Million Years Ago? A Game-Changing Telescope Is About to Drop First Pics. Here's How to Watch.

Scientists have finally FOUND the universe's 'missing matter': Elusive substance is discovered in 10 million degree filament - addressing a decades-long mystery
Scientists have finally FOUND the universe's 'missing matter': Elusive substance is discovered in 10 million degree filament - addressing a decades-long mystery

Daily Mail​

timea day ago

  • Science
  • Daily Mail​

Scientists have finally FOUND the universe's 'missing matter': Elusive substance is discovered in 10 million degree filament - addressing a decades-long mystery

After 10 years of searching, scientists have finally found the universe's 'missing matter'. For our cosmological models to work, scientists know there should be a certain amount of matter - the substance that makes up everything we can see - out in the universe. The problem is that only a third of this matter has ever been seen, while the rest is missing. Now, experts from the European Space Agency say they may have solved the mystery. They believe the 'missing' matter lies in a vast filament of 10-million-degree gases stretching across the depths of the universe. At over 23 million light-years in length, this cosmic ribbon contains 10 times as much matter as the Milky Way. The enormous thread connects four galaxy clusters, each containing thousands of individual galaxies filled with billions of stars. 'It seems that the "missing" matter may truly be lurking in hard-to-see threads woven across the universe,' said co-author Dr Norbert Schartel, a project scientist on the European Space Agency's (ESA) XMM-Newton telescope. The filament stretches diagonally away from Earth as part of the Shapley Supercluster - a collection of 8,000 galaxies which is one of the biggest structures in the universe. The thread is so long that travelling its length would be like crossing the Milky Way end-to-end more than 230 times. As its gases collapse inwards under gravity, they produce vast amounts of energy which causes the gas to become extremely hot. However, because the gas is so spread out, filaments only give out a very faint light which is hard to distinguish from that of nearby galaxies and black holes. Lead researcher Dr Konstantinos Migkas, of the Leiden Observatory in the Netherlands, told MailOnline: 'Throughout this thin, diffuse, low-emitting gas, there are many supermassive black holes that emit a lot of X-ray radiation, overcrowding the signal from the filaments and their gas. 'It's like trying to see a candlelight next to 10 luminous flashlights from 100 meters away.' Without being able to isolate the light coming from the gas itself, astronomers haven't been able to work out how much of the universe's hidden mass it contains. In a new paper, published in the journal Astronomy and Astrophysics, astronomers have managed to do this for the very first time using two powerful X-ray telescopes. Using powerful space telescopes, astronomers were able to distinguish the gas' X-ray radiation from contaminating sources such as supermassive black holes Why does the universe have missing matter? To figure out how the universe has evolved, cosmologists have created simulations called models. These models have been highly successful at predicting the distribution of galaxies and other structures. The models also tell scientists that there should be a certain amount of normal matter in the universe. However, only about 20 to 30 per cent of the predicted matter has ever been seen. If this matter does exist, it might be spread out in filaments of gas connecting dense clusters of galaxies. If not, this suggests that scientists' best models of the universe are wrong after all. The researchers combined observations from the ESA's XMM-Newton and the Japan Aerospace Exploration Agency's (JAXA) Suzaku X-ray space telescopes. While Suzaku mapped out gas' faint X-ray radiation over a large area, XMM-Newton was able to pinpoint sources of contaminating X-rays such as supermassive black holes. Co-author Dr Florian Pacaud, of the University of Bonn, says: 'Thanks to XMM-Newton we could identify and remove these cosmic contaminants, so we knew we were looking at the gas in the filament and nothing else.' For the first time ever, that has allowed scientists to work out the properties of a cosmic filament. The exciting part for scientists is that these observations confirm that their models of the universe were correct all along. Dr Migkas says: 'From cosmological, large-scale structure simulations that resemble the universe, we see that this still-missing matter should reside in these strings of gas and galaxies and this matter also should have a certain temperature and density. 'In our study, we confirm for the first time unambiguously that indeed, there are cosmic filaments with exactly the right density and temperature of the gas, as predicted by our current model of cosmology.' That is a very good indication that the large-scale structure of the local universe does look like scientists' predictions suggest. In addition to revealing a previously unseen thread of matter running through the universe, these findings show galaxy clusters are connected over vast distances. That means some of the densest, most extreme structures in the universe could be part of a vast 'cosmic web'. This is an invisible cobweb of filaments that may underpin the structure of everything we see around us. Now, we are one step closer to understanding how that network fits together. WHAT IS THE COSMIC WEB OF FILAMENTS THAT THE UNIVERSE IS MADE UP OF? 'Ordinary' matter, which makes up everything we can see, corresponds to only five per cent of the known universe. The rest is made up of so-called 'dark matter.' For decades, at least half of this regular matter had eluded detection, but scientists have in recent years made the first direct observations of a 'cosmic web' of filaments spanning between galaxies. These filaments are made up of gas at temperatures between 100,000°C (180,032 °F) and 10 million°C (50 million°F) and the experts believe these structures may account for the 'missing' ordinary matter. Studies have estimated that around 95 per cent of the universe is made of a mixture of 'dark matter' and 'dark energy', which only makes its presence felt by its gravitational pull, but has never been seen directly. What is less widely known, however, is that around half of the regular matter is also missing. In 2015, a team led by University of Geneva scientist Dominique Eckert claimed that these 'missing baryons' - subatomic particles made up of three quarks - were detected because of their X-ray signature in a massive cluster of galaxies known as Abell 2744. Using the XMM-Newton space telescope, the researchers found matter concentrated into a network of knots and links connected through vast filaments, known as the 'cosmic web'. Large-scale galaxy surveys have shown that the distribution of ordinary matter in the universe is not homogeneous. Instead, under the action of gravity, matter is concentrated into so-called filamentary structures, forming a network of knots and links called the 'cosmic web'. The regions experiencing the highest gravitational force collapse and form the knots of the network, such as Abell 2744. Researchers focused on Abell 2744 - a massive cluster of galaxies with a complex distribution of dark and luminous matter at its centre - to make their finding. Comparable to neural networks, these knots then connect to one another through filaments, where the researchers identified the presence of gas, and consequently, the missing ordinary matter thought to make up the universe.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store