logo
#

Latest news with #WillDunham

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

The Print

time16 hours ago

  • Science
  • The Print

Possible new dwarf planet spotted near the edge of the solar system

Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. By Will Dunham WASHINGTON (Reuters) -Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. 'It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past,' said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. 'We don't know the shape yet. Unfortunately it is too far away and it is a bit difficult to resolve it with telescopes,' Cheng said. 'Its composition is totally unknown yet, but likely similar to other icy bodies.' The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. 'We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units,' Cheng said. 'The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now.' The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star – in our case the sun – and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. 'The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis,' Cheng said. (Reporting by Will Dunham; Editing by Daniel Wallis) Disclaimer: This report is auto generated from the Reuters news service. ThePrint holds no responsibility for its content.

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

Yahoo

time2 days ago

  • General
  • Yahoo

Possible new dwarf planet spotted near the edge of the solar system

By Will Dunham WASHINGTON (Reuters) -Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. "It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past," said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. "We don't know the shape yet. Unfortunately it is too far away and it is a bit difficult to resolve it with telescopes," Cheng said. "Its composition is totally unknown yet, but likely similar to other icy bodies." The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. "We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units," Cheng said. "The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now." The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star - in our case the sun - and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. "The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis," Cheng said.

Early whalebone tools show inventiveness of prehistoric people
Early whalebone tools show inventiveness of prehistoric people

IOL News

time4 days ago

  • Science
  • IOL News

Early whalebone tools show inventiveness of prehistoric people

A large projectile point made of gray whale bone from the Duruthy rockshelter, dated between 18 000 and 17 500 years ago, is pictured in Landes, France. Image: Alexandre Lefebvre / REUTERS Will Dunham Artifacts found at archeological sites in France and Spain along the Bay of Biscay shoreline show that humans have been crafting tools from whale bones since more than 20 000 years ago, illustrating anew the resourcefulness of prehistoric people. The tools, primarily hunting implements such as projectile points, were fashioned from the bones of at least five species of large whales, the researchers said. Bones from sperm whales were the most abundant, followed by fin whales, gray whales, right or bowhead whales - two species indistinguishable with the analytical method used in the study - and blue whales. With seafaring capabilities by humans not developing until thousands of years later, the Ice Age hunter-gatherers who made these implements would have been unable to actually hunt whales for their resources in the Bay of Biscay, a gulf of the Atlantic Ocean. "These whales were likely opportunistically acquired from stranded animals or drifted carcasses, rather than actively hunted," said biomolecular archaeologist Krista McGrath of the Autonomous University of Barcelona, co-lead author of the study published in the journal Nature Communications. "The majority of the bones were identified from offshore, deep-water species - such as sperm whale and fin whale - which would have been very difficult to hunt for these prehistoric groups. And there is no evidence from this time period that they had the level of technology that active hunting would have required, like seafaring boats," McGrath said. The 71 whale bone artifacts analyzed by the researchers were found at 27 cave or rock shelter sites. The two oldest ones, both from the bones of fin whales, came from the Spanish Cantabrian sites of Rascaño, dating to about 20 500 years ago, and El Juyo, dating to about 19 800 years ago. The rough age range of the artifacts was from 14 000 years old to more than 20 000 years old, but most were 16 000 to 17 500 years old. The main raw material used to manufacture spear points at the time was antler from reindeer or red deer because it is less brittle and more pliable than land mammal bone. But whale bone offered some advantages, including its large dimensions, with some of the projectile points measuring more than 40 cm long, a size difficult to achieve using antler. "They can be very long and thick, and were probably hafted on spear-style projectiles rather than arrows. They are usually found as fragments, many of which bear fractures related to use, and they were most likely used to hunt the main game animals of the time - reindeer and red deer, horse, bison and ibex," said archaeologist and study co-senior author Jean-Marc Pétillon of the French National Centre for Scientific Research. Bone tools were used by members of the human evolutionary lineage dating back far before our species Homo sapiens emerged more than 300,000 years ago in Africa. The artifacts examined in this study pushed back the oldest-known use of whale bones for tool making by 1 000 to 2 000 years. The objects were previously discovered at the various sites and kept in museum collections. The researchers used modern analytical techniques to determine the species from which the bones came and the age of the artifacts. Humans living in this period of prehistory generally were inland hunters, obtaining most of their subsistence needs from the hunting of large hoofed mammals, Pétillon said. The new findings enhance the understanding of their exploitation of seashore resources, Pétillon added. Previous research had shown that Ice Age people gathered seashells, hunted seabirds and fished for marine fishes as a complement to meat from terrestrial animals. "The new findings tell us that these prehistoric groups were likely very well adapted to these coastal environments, and very likely had deep local ecological knowledge and understanding of their coastal habitats," McGrath said. "Whale bones would have been for more than just making tools. There is evidence for their use as fuel as well - the bones contain large amounts of oil - among other things. And the rest of the whale would also certainly have been used – teeth or baleen depending on the species, meat, skin. A single whale provides a lot of resources," McGrath said. | Reuters

Astronomers scrutinize a star behaving unlike any other
Astronomers scrutinize a star behaving unlike any other

Yahoo

time4 days ago

  • General
  • Yahoo

Astronomers scrutinize a star behaving unlike any other

By Will Dunham WASHINGTON (Reuters) -Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays, pegging it as an exotic member of a class of celestial objects first identified only three years ago. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Curtin University in Australia, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesized companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behavior for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its 'crazy' bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said.

Astronomers scrutinize a star behaving unlike any other
Astronomers scrutinize a star behaving unlike any other

Yahoo

time4 days ago

  • General
  • Yahoo

Astronomers scrutinize a star behaving unlike any other

By Will Dunham WASHINGTON (Reuters) -Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays, pegging it as an exotic member of a class of celestial objects first identified only three years ago. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers said it belongs to a class of objects called "long-period radio transients," known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Curtin University in Australia, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from NASA's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesized companion star, the researchers said. "The radio brightness of the object varies a lot. We saw no radio emission from the object before November 2023. And in February 2024, we saw it became extremely bright. Fewer than 30 objects in the sky have ever reached such brightness in radio waves. Remarkably, at the same time, we also detected X-ray pulses from the object. We can still detect it in radio, but much fainter," Wang said. Wang said it is thrilling to see a new type of behavior for stars. "The X-ray detection came from NASA's Chandra space telescope. That part was a lucky break. The telescope was actually pointing at something else, but just happened to catch the source during its 'crazy' bright phase. A coincidence like that is really, really rare - like finding a needle in a haystack," Wang said.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store