An Important Force of the Universe Appears to Be Changing, Scientists Find
Now, the latest observations from the Dark Energy Spectroscopic Instrument (DESI) indicate that dark energy has actually changed over time — a development that could potentially upend the prevailing cosmological model, and perhaps hint at a new understanding of physics. The findings, detailed in a series of papers currently awaiting peer review, have implications not only for how the universe has evolved, but what its eventual fate might be as well.
"It sounds like it will be a paradigm shift, something that will change our understanding and the way we are putting all the pieces together," Mustapha Ishak-Boushaki, a cosmologist at the University of Texas and DESI team member, told Quanta Magazine of the findings.
The DESI telescope, located in Kitt Peak, Arizona, searches and measures galaxies to tease out the effects of dark energy. It's now surveyed a staggering 15 million of these realms as far as 11 billion light years away, providing the most comprehensive portrait to date of the galaxies as they shifted and clustered together over the eons — movements thought to betray the presence of dark energy.
Following up on preliminary findings shared a year ago, the latest DESI results strongly suggest that the acceleration of the universe's expansion started sooner than once thought, peaked early on, and is currently weakening.
This is a big deal. Dark energy, as it's currently theorized, stems from the idea of a cosmological constant. Proposed by Albert Einstein, it assumes that there's some unseen background force powerful enough to explain why the universe, with all its mass, doesn't collapse under its own gravity.
Einstein later called the cosmological constant his "biggest blunder," but it found a second life decades later with the idea of dark energy, along with dark matter, in the late 1990s. Dark energy, envisioned as this constant, is now a cornerstone of the lambda-CDM model, the standard model of cosmology.
In this model, dark energy pushes against the literal weight of existence to make sure it all doesn't come crashing down, accelerating the universe's expansion at a fixed rate. Meanwhile, invisible dark matter, thought to make up roughly 25 percent of the universe compared to a measly five percent of the regular matter we're made out of, is thought to govern the formation of galaxies from the shadows with the pull of its gravity.
Though it may be the standard theory, lambda-CDM has always been contentious, not least of all because it doesn't explain what dark energy actually is (Einstein thought it was a force intrinsic to the vacuum of space itself.)
It's too early to say that the dominant model has been trumped, but it's on the ropes. The DESI results, combined with extensive observations of the cosmic microwave background — the leftover light from the Big Bang — and of thousands of supernovas, indicate a discrepancy of 4.2 sigma, a measurement of uncertainty indicating, in this case, that there's only a one in 30,000 chance that the lambda-CDM model is correct, per Quanta Mag. Five sigma, however, is the standard needed to be considered a bona fide discovery. Though it hasn't quite made the cut yet, the latest work yields a higher sigma level than reported a year ago — and there's still two more years of DESI data to parse through.
Comfortingly, one possible implication of a waning dark energy is that the universe won't relentlessly expand until it rips itself apart, as one theory holds. On the other hand, if dark energy's powers are diminishing, it's possible its effects could not halt at zero but go on to reverse course, dooming the cosmos to implode on itself. Then again, the mere fact that dark energy can change at all could mean that everything's up in the air.
"As far as theoretical models, Pandora's box just opened," Ishak-Boushaki told New Scientist. "We were stuck with a cosmological constant. We are not stuck anymore."
More on cosmology: Physicists Find That the Universe Could "Collapse Like a House of Cards"
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


WIRED
3 days ago
- WIRED
AI Is Designing Bizarre New Physics Experiments That Actually Work
The original version of this story appeared in Quanta Magazine. There are precision measurements, and then there's the Laser Interferometer Gravitational-Wave Observatory. In each of LIGO's twin gravitational wave detectors (one in Hanford, Washington, and the other in Livingston, Louisiana), laser beams bounce back and forth down the four-kilometer arms of a giant L. When a gravitational wave passes through, the length of one arm changes relative to the other by less than the width of a proton. It's by measuring these minuscule differences—a sensitivity akin to sensing the distance to the star Alpha Centauri down to the width of a human hair—that discoveries are made. The design of the machine was decades in the making, as physicists needed to push every aspect to its absolute physical limits. Construction began in 1994 and took more than 20 years, including a four-year shutdown to improve the detectors, before LIGO detected its first gravitational wave in 2015: a ripple in the space-time fabric coming from the faraway collision of a pair of black holes. Rana Adhikari, a physicist at the California Institute of Technology, led the detector optimization team in the mid-2000s. He and a handful of collaborators painstakingly honed parts of the LIGO design, exploring the contours of every limit that stood in the way of a more sensitive machine. But after the 2015 detection, Adhikari wanted to see if they could improve upon LIGO's design, enabling it, for instance, to pick up gravitational waves in a broader band of frequencies. Such an improvement would enable LIGO to see merging black holes of different sizes, as well as potential surprises. 'What we'd really like to discover is the wild new astrophysical thing no one has imagined,' Adhikari said. 'We should have no prejudice about what the universe makes.'
Yahoo
6 days ago
- Yahoo
How a mysterious particle could explain the universe's missing antimatter
Everything we see around us, from the ground beneath our feet to the most remote galaxies, is made of matter. For scientists, that has long posed a problem: According to physicists' best current theories, matter and its counterpart, antimatter, ought to have been created in equal amounts at the time of the Big Bang. But antimatter is vanishingly rare in the universe. So what happened? Physicists don't know the answer to that question yet, but many think the solution must involve some subtle difference in the way that matter and antimatter behave. And right now, the most promising path into that unexplored territory centers on new experiments involving the mysterious subatomic particle known as the neutrino. 'It's not to say that neutrinos are definitely the explanation of the matter-antimatter asymmetry, but a very large class of models that can explain this asymmetry are connected to neutrinos,' says Jessica Turner, a theoretical physicist at Durham University in the United Kingdom. Let's back up for a moment: When physicists talk about matter, that's just the ordinary stuff that the universe is made of — mainly protons and neutrons (which make up the nuclei of atoms), along with lighter particles like electrons. Although the term 'antimatter' has a sci-fi ring to it, antimatter is not all that different from ordinary matter. Typically, the only difference is electric charge: For example, the positron — the first antimatter particle to be discovered — matches an electron in its mass but carries a positive rather than a negative charge. (Things are a bit more complicated with electrically neutral particles. For example, a photon is considered to be its own antiparticle, but an antineutron is distinct from a neutron in that it's made up of antiquarks rather than ordinary quarks.) Various antimatter particles can exist in nature; they occur in cosmic rays and in thunderclouds, and are produced by certain kinds of radioactive decay. (Because people — and bananas — contain a small amount of radioactive potassium, they emit minuscule amounts of antimatter in the form of positrons.) Small amounts of antimatter have also been created by scientists in particle accelerators and other experiments, at great effort and expense — putting a damper on science fiction dreams of rockets propelled by antimatter or planet-destroying weapons energized by it. When matter and antimatter meet, they annihilate, releasing energy in the form of radiation. Such encounters are governed by Einstein's famous equation, E=mc2 — energy equals mass times the square of the speed of light — which says you can convert a little bit of matter into a lot of energy, or vice versa. (The positrons emitted by bananas and bodies have so little mass that we don't notice the teeny amounts of energy released when they annihilate.) Because matter and antimatter annihilate so readily, it's hard to make a chunk of antimatter much bigger than an atom, though in theory you could have everything from antimatter molecules to antimatter planets and stars. But there's a puzzle: If matter and antimatter were created in equal amounts at the time of the Big Bang, as theory suggests, shouldn't they have annihilated, leaving a universe made up of pure energy? Why is there any matter left? Physicists' best guess is that some process in the early universe favored the production of matter compared to the production of antimatter — but exactly what that process was is a mystery, and the question of why we live in a matter-dominated universe is one of the most vexing problems in all of physics. Crucially, physicists haven't been able to think of any such process that would mesh with today's leading theory of matter and energy, known as the Standard Model of particle physics. That leaves theorists seeking new ideas, some as-yet-unknown physics that goes beyond the Standard Model. This is where neutrinos come in. A neutral answer Neutrinos are tiny particles without any electric charge. (The name translates as 'little neutral one.') According to the Standard Model, they ought to be massless, like photons, but experiments beginning in the 1990s showed that they do in fact have a tiny mass. (They're at least a million times lighter than electrons, the extreme lightweights among normal matter.) Since physicists already know that neutrinos violate the Standard Model by having mass, their hope is that learning more about these diminutive particles might yield insights into whatever lies beyond. Neutrinos have been slow to yield their secrets, however, because they barely interact with other particles. About 60 billion neutrinos from the Sun pass through every square centimeter of your skin each second. If those neutrinos interacted with the atoms in our bodies, they would probably destroy us. Instead, they pass right through. 'You most likely will not interact with a single neutrino in your lifetime,' says Pedro Machado, a physicist at Fermilab near Chicago. 'It's just so unlikely.' Experiments, however, have shown that neutrinos 'oscillate' as they travel, switching among three different identities — physicists call them 'flavors': electron neutrino, muon neutrino and tau neutrino. Oscillation measurements have also revealed that different-flavored neutrinos have slightly different masses. Neutrino oscillation is weird, but it may be weird in a useful way, because it might allow physicists to probe certain fundamental symmetries in nature — and these in turn may illuminate the most troubling of asymmetries, namely the universe's matter-antimatter imbalance. For neutrino researchers, a key symmetry is called charge-parity or CP symmetry. It's actually a combination of two distinct symmetries: Changing a particle's charge flips matter into antimatter (or vice versa), while changing a particle's parity flips a particle into its mirror image (like turning a right-handed glove into a left-handed glove). So the CP-opposite version of a particle of ordinary matter is a mirror image of the corresponding antiparticle. But does this opposite particle behave exactly the same as the original one? If not, physicists say that CP symmetry is violated — a fancy way of saying that matter and antimatter behave slightly differently from one another. So any examples of CP symmetry violation in nature could help to explain the matter-antimatter imbalance. In fact, CP violation has already been observed in some mesons, a type of subatomic particle typically made up of one quark and one antiquark, a surprising result first found in the 1960s. But it's an extremely small effect, and it falls far short of being able to account for the universe's matter-antimatter asymmetry. In July 2025, scientists working at the Large Hadron Collider at CERN near Geneva reported clear evidence for a similar violation by one type of particle from a different family of subatomic particles known as baryons — but this newly observed CP violation is similarly believed to be much too small to account for the matter-antimatter imbalance. Experiments on the horizon So what about neutrinos? Do they violate CP symmetry — and if so, do they do it in a big enough way to explain why we live in a matter-dominated universe? This is precisely the question being addressed by a new generation of particle physics experiments. Most ambitious among them is the Deep Underground Neutrino Experiment (DUNE), which is now under construction in the United States; data collection could begin as early as 2029. DUNE will employ the world's most intense neutrino beam, which will fire both neutrinos and antineutrinos from Fermilab to the Sanford Underground Research Facility, located 800 miles away in South Dakota. (There's no tunnel; the neutrinos and antineutrinos simply zip through the earth, for the most part hardly noticing that it's there.) Detectors at each end of the beam will reveal how the particles oscillate as they traverse the distance between the two labs — and whether the behavior of the neutrinos differs from that of the antineutrinos. DUNE won't pin down the precise amount of neutrinos' CP symmetry violation (if there is any), but it will set an upper limit on it. The larger the possible effect, the greater the discrepancy in the behavior of neutrinos versus antineutrinos, and the greater the likelihood that neutrinos could be responsible for the matter-antimatter asymmetry in the early universe. For Shirley Li, a physicist at the University of California, Irvine, the issue of neutrino CP violation is an urgent question, one that could point the way to a major rethink of particle physics. 'If I could have one question answered by the end of my lifetime, I would want to know what that's about,' she says. Aside from being a major discovery in its own right, CP symmetry violation in neutrinos could challenge the Standard Model by pointing the way to other novel physics. For example, theorists say it would mean there could be two kinds of neutrinos — left-handed ones (the normal lightweight ones observed to date) and much heavier right-handed neutrinos, which are so far just a theoretical possibility. (The particles' 'handedness' refers to their quantum properties.) These right-handed neutrinos could be as much as 1015 times heavier than protons, and they'd be unstable, decaying almost instantly after coming into existence. Although they're not found in today's universe, physicists suspect that right-handed neutrinos may have existed in the moments after the Big Bang — possibly decaying via a process that mimicked CP violation and favored the creation of matter over antimatter. It's even possible that neutrinos can act as their own antiparticles — that is, that neutrinos could turn into antineutrinos and vice versa. This scenario, which the discovery of right-handed neutrinos would support, would make neutrinos fundamentally different from more familiar particles like quarks and electrons. If antineutrinos can turn into neutrinos, that could help explain where the antimatter went during the universe's earliest moments. One way to test this idea is to look for an unusual type of radioactive decay — theorized but thus far never observed — known as 'neutrinoless double-beta decay.' In regular double-beta decay, two neutrons in a nucleus simultaneously decay into protons, releasing two electrons and two antineutrinos in the process. But if neutrinos can act as their own antiparticles, then the two neutrinos could annihilate each other, leaving only the two electrons and a burst of energy. Stay in the KnowSign up for the Knowable Magazine newsletter today A number of experiments are underway or planned to look for this decay process, including the KamLAND-Zen experiment, at the Kamioka neutrino detection facility in Japan; the nEXO experiment at the SNOLAB facility in Ontario, Canada; the NEXT experiment at the Canfranc Underground Laboratory in Spain; and the LEGEND experiment at the Gran Sasso laboratory in Italy. KamLAND-Zen, NEXT and LEGEND are already up and running. While these experiments differ in the details, they all employ the same general strategy: They use a giant vat of dense, radioactive material with arrays of detectors that look for the emission of unusually energetic electrons. (The electrons' expected neutrino companions would be missing, with the energy they would have had instead carried by the electrons.) While the neutrino remains one of the most mysterious of the known particles, it is slowly but steadily giving up its secrets. As it does so, it may crack the puzzle of our matter-dominated universe — a universe that happens to allow inquisitive creatures like us to flourish. The neutrinos that zip silently through your body every second are gradually revealing the universe in a new light. 'I think we're entering a very exciting era,' says Turner. This article originally appeared in Knowable Magazine, an independent journalistic endeavor from Annual Reviews. Sign up for the newsletter. Solve the daily Crossword
Yahoo
7 days ago
- Yahoo
James Webb telescope spots earliest black hole in the known universe, looking 'as far back as you can practically go'
When you buy through links on our articles, Future and its syndication partners may earn a commission. Scientists using the James Webb Space Telescope (JWST) have identified the earliest black hole found thus far, dating back to more than 13 billion years ago. The black hole and its home galaxy, together dubbed CAPERS-LRD-z9, existed just 500 million years after the Big Bang. Its properties could help researchers understand what the universe was like in that elusive early era, according to a study published August 6 in the Astrophysical Journal Letters. "When looking for black holes, this is about as far back as you can practically go," study coauthor Anthony Taylor, an astronomer at the University of Texas, Austin, said in a statement. "We're really pushing the boundaries of what current technology can detect." CAPERS-LRD-z9 is a type of galaxy called a "Little Red Dot," so named because they're small (as galaxies go) and appear to emit red light when observed with JWST's powerful infrared sensors. Little Red Dots shine brightly, which might suggest they contain a lot of stars — except they formed in the early universe, when an abundance of stars was unlikely, according to current leading theories of cosmology. "The discovery of Little Red Dots was a major surprise from early JWST data, as they looked nothing like galaxies seen with the Hubble Space Telescope," study coauthor Steven Finkelstein, an astronomer at UT Austin, said in the statement. "Now, we're in the process of figuring out what they're like and how they came to be." To better understand the nature of CAPERS-LRD-z9 and Little Red Dots like it, researchers investigated the galaxy with the JWST. The team found a distinct pattern of wavelengths of light created when fast-moving gas falls into a black hole. Though astronomers have found a few objects farther away than CAPERS-LRD-z9 that might be black holes, this pattern makes CAPERS-LRD-z9 the earliest confirmed black hole to date and suggests that black holes might lie at the center of other Little Red Dots. Related: James Webb telescope captures one of the deepest-ever views of the universe — Space photo of the week The black hole at the center of CAPERS-LRD-z9 is pretty hefty. It's some 38 million times more massive than the sun or about 10 times more massive than Sagittarius A*, the supermassive black hole at the center of the Milky Way — though there's considerable wiggle room in that estimate. The scientists also think that the black hole has as much mass as about 5% of all the stars in its galaxy put together, a ratio far exceeding that of modern galaxies. "This adds to growing evidence that early black holes grew much faster than we thought possible," Finkelstein said. "Or they started out far more massive than our models predict." RELATED STORIES —Scientists detect most massive black hole merger ever — and it birthed a monster 225 times as massive as the sun —Black holes may obey the laws of physics after all, new theory suggests —Behold the first direct image of a supermassive black hole spewing a jet of particles CAPERS-LRD-z9 could also help explain why Little Red Dots are red. A dense cloud of gas surrounding the black hole could shift any emitted light into longer, redder wavelengths, the researchers predicted. Further studies of CAPERS-LRD-z9 could offer even more information about black holes and galaxies in the early universe, the scientists wrote in the study. "This is a good test object for us," Taylor said in the statement. "We haven't been able to study early black hole evolution until recently, and we are excited to see what we can learn from this unique object." Solve the daily Crossword