New insights into Paranthropus robustus: a landmark study on human evolution
Dr Palesa Madupe, Dr Claire Koeng and Dr Ioannis Patramanis.
Image: Victor Yan Kin Lee
In a landmark study that pushes the boundaries of our understanding of human evolution, a research team led by scholars from the University of Cape Town (UCT) and the University of Copenhagen has unveiled powerful insights into Paranthropus robustus—a close, extinct cousin of modern humans.
Published in the prestigious journal Science, the study successfully harnesses two-million-year-old protein traces extracted from fossilised teeth, retrieved from the rich archaeological tapestry of South Africa's Cradle of Humankind.
This pioneering research not only presents some of the oldest human genetic data ever recovered from Africa but also disrupts long-held beliefs about the biological make-up and diversity of one of our early hominin relatives. As Dr Palesa Madupe, co-lead of the study and a research associate at UCT's Human Evolution Research Institute (HERI), explained: 'By sampling multiple African Pleistocene hominin individuals classified within the same group, we're now able to observe sexual dimorphism and genetic variations that existed among them.'
The central achievements of the study stem from advanced palaeoproteomic techniques and mass spectrometry, enabling researchers to identify sex-specific variants of amelogenin, a critical protein found in tooth enamel. Of the ancient individuals examined, two were confirmed as male, while innovative quantitative methodologies indicated that the others were female.
Video Player is loading.
Play Video
Play
Unmute
Current Time
0:00
/
Duration
-:-
Loaded :
0%
Stream Type LIVE
Seek to live, currently behind live
LIVE
Remaining Time
-
0:00
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
Text Color White Black Red Green Blue Yellow Magenta Cyan
Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan
Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan
Transparency Transparent Semi-Transparent Opaque
Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps
Reset
restore all settings to the default values Done
Close Modal Dialog
End of dialog window.
Advertisement
Video Player is loading.
Play Video
Play
Unmute
Current Time
0:00
/
Duration
-:-
Loaded :
0%
Stream Type LIVE
Seek to live, currently behind live
LIVE
Remaining Time
-
0:00
This is a modal window.
Beginning of dialog window. Escape will cancel and close the window.
Text Color White Black Red Green Blue Yellow Magenta Cyan
Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan
Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan
Transparency Transparent Semi-Transparent Opaque
Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps
Reset
restore all settings to the default values Done
Close Modal Dialog
End of dialog window.
Next
Stay
Close ✕
'Enamel is extremely valuable because it provides information both about biological sex and evolutionary relationships,' said Claire Koenig, co-lead and postdoctoral researcher at the University of Copenhagen's Centre for Protein Research. 'However, since identifying females relies on the absence of specific protein variants, it is crucial to rigorously control our methods to ensure confident results.'
Adding to the intrigue of this study, another enamel protein—enamelin—uncovered unexpected genetic diversity. While two individuals shared a particular protein variant, a third displayed distinct characteristics, and a fourth exhibited both, prompting co-lead Ioannis Patramanis to remark, 'When studying proteins, specific mutations are thought to be characteristic of a species... we were surprised to discover that what we initially thought was a mutation uniquely describing Paranthropus robustus was actually variable within that group.'
This revelation necessitates a critical re-evaluation of how ancient hominin species are classified, illustrating that genetic variability—beyond mere skeletal features—must be integral to our understanding of their complexity.
'With this data, we shed light on how evolution worked in the deep past and how recovering these mutations might help us understand genetic differences we see today,'Dr Madupe said.
Living between 2.8 and 1.2 million years ago and walking upright, Paranthropus robustus likely coexisted with early members of the genus Homo. Although diverging on a different evolutionary path, their narrative remains crucial in chronicling the origins of modern humans.
This study marks a significant advancement in palaeoproteomics within Africa and underscores the critical role of African scholars in rewriting the story of human history.
'As a young African researcher, I'm honoured to have significantly contributed to such a high-impact publication as its co-lead. However, the journey towards inclusivity for researchers of colour continues, and more of us need to be leading research like this,' reflected Dr Madupe.
HERI at UCT is at the forefront of this transformative movement, having initiated innovative programmes that are imparting palaeoproteomic techniques to a new generation of African scientists, with a focus on expanding these training initiatives throughout the continent.
'We are excited about the capacity building that has come out of this collaboration. The future of African-led palaeoanthropology research is bright,' said Professor Rebecca Ackermann, co-director of HERI, as the team looks ahead to further discoveries that could reshape our understanding of human ancestry.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles

IOL News
4 days ago
- IOL News
New insights into Paranthropus robustus: a landmark study on human evolution
Dr Palesa Madupe, Dr Claire Koeng and Dr Ioannis Patramanis. Image: Victor Yan Kin Lee In a landmark study that pushes the boundaries of our understanding of human evolution, a research team led by scholars from the University of Cape Town (UCT) and the University of Copenhagen has unveiled powerful insights into Paranthropus robustus—a close, extinct cousin of modern humans. Published in the prestigious journal Science, the study successfully harnesses two-million-year-old protein traces extracted from fossilised teeth, retrieved from the rich archaeological tapestry of South Africa's Cradle of Humankind. This pioneering research not only presents some of the oldest human genetic data ever recovered from Africa but also disrupts long-held beliefs about the biological make-up and diversity of one of our early hominin relatives. As Dr Palesa Madupe, co-lead of the study and a research associate at UCT's Human Evolution Research Institute (HERI), explained: 'By sampling multiple African Pleistocene hominin individuals classified within the same group, we're now able to observe sexual dimorphism and genetic variations that existed among them.' The central achievements of the study stem from advanced palaeoproteomic techniques and mass spectrometry, enabling researchers to identify sex-specific variants of amelogenin, a critical protein found in tooth enamel. Of the ancient individuals examined, two were confirmed as male, while innovative quantitative methodologies indicated that the others were female. Video Player is loading. Play Video Play Unmute Current Time 0:00 / Duration -:- Loaded : 0% Stream Type LIVE Seek to live, currently behind live LIVE Remaining Time - 0:00 This is a modal window. Beginning of dialog window. Escape will cancel and close the window. Text Color White Black Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan Transparency Transparent Semi-Transparent Opaque Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps Reset restore all settings to the default values Done Close Modal Dialog End of dialog window. Advertisement Video Player is loading. Play Video Play Unmute Current Time 0:00 / Duration -:- Loaded : 0% Stream Type LIVE Seek to live, currently behind live LIVE Remaining Time - 0:00 This is a modal window. Beginning of dialog window. Escape will cancel and close the window. Text Color White Black Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan Transparency Transparent Semi-Transparent Opaque Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps Reset restore all settings to the default values Done Close Modal Dialog End of dialog window. Next Stay Close ✕ 'Enamel is extremely valuable because it provides information both about biological sex and evolutionary relationships,' said Claire Koenig, co-lead and postdoctoral researcher at the University of Copenhagen's Centre for Protein Research. 'However, since identifying females relies on the absence of specific protein variants, it is crucial to rigorously control our methods to ensure confident results.' Adding to the intrigue of this study, another enamel protein—enamelin—uncovered unexpected genetic diversity. While two individuals shared a particular protein variant, a third displayed distinct characteristics, and a fourth exhibited both, prompting co-lead Ioannis Patramanis to remark, 'When studying proteins, specific mutations are thought to be characteristic of a species... we were surprised to discover that what we initially thought was a mutation uniquely describing Paranthropus robustus was actually variable within that group.' This revelation necessitates a critical re-evaluation of how ancient hominin species are classified, illustrating that genetic variability—beyond mere skeletal features—must be integral to our understanding of their complexity. 'With this data, we shed light on how evolution worked in the deep past and how recovering these mutations might help us understand genetic differences we see today,'Dr Madupe said. Living between 2.8 and 1.2 million years ago and walking upright, Paranthropus robustus likely coexisted with early members of the genus Homo. Although diverging on a different evolutionary path, their narrative remains crucial in chronicling the origins of modern humans. This study marks a significant advancement in palaeoproteomics within Africa and underscores the critical role of African scholars in rewriting the story of human history. 'As a young African researcher, I'm honoured to have significantly contributed to such a high-impact publication as its co-lead. However, the journey towards inclusivity for researchers of colour continues, and more of us need to be leading research like this,' reflected Dr Madupe. HERI at UCT is at the forefront of this transformative movement, having initiated innovative programmes that are imparting palaeoproteomic techniques to a new generation of African scientists, with a focus on expanding these training initiatives throughout the continent. 'We are excited about the capacity building that has come out of this collaboration. The future of African-led palaeoanthropology research is bright,' said Professor Rebecca Ackermann, co-director of HERI, as the team looks ahead to further discoveries that could reshape our understanding of human ancestry.

IOL News
4 days ago
- IOL News
Prof Priscilla Baker: a trailblazer in science and the 2025 L'Oréal-UNESCO laureate
Prof Priscilla Baker's groundbreaking career has earned her the top global recognition as the 2025 L'Oréal-UNESCO For Women in Science Laureate, for Africa and the Arab States. Image: UWC University of the Western Cape Analytical Chemistry Prof Priscilla Baker's groundbreaking career has earned her the top global recognition as the 2025 L'Oréal-UNESCO For Women in Science Laureate, for Africa and the Arab States. In a world where healthcare disparities persist and women remain underrepresented in science, Prof Baker is breaking barriers with her pioneering research in wearable electrochemical sensors while advocating for greater inclusivity in STEM fields. Growing up in Bellville South, Prof Baker said that, until recently, she would still go back to her old high school to motivate learners. Like many high schoolers in the mid-1980s, under PW Botha's State of Emergency, her schooling was also disrupted as she started matric in 1986. However, Prof Baker's path to scientific leadership was fraught with obstacles. In 1990, she became the first woman of colour to graduate with a BSc in Physical Oceanography from the University of Cape Town. Still, systemic discrimination barred her from pursuing honours in the field. 'The practical component of oceanography required long periods at sea, but the boats weren't equipped for women, and the crew were not ready to accept a person of colour as a professional," she recalled. Undeterred, she shifted to analytical chemistry, excelling under the mentorship of Prof Andrew Crouch and later earning her PhD in Chemistry from Stellenbosch University. This experience profoundly shaped her commitment to mentorship. "By actively sharing my journey, I've become a tangible example for female students to explore careers based on capability, not stereotypes," she said. Prof Baker with her Gold Medal prize from the South African Chemical Institute (1996). Prof Baker, the co-director of the SensorLab research group at UWC with Prof Emmanuel Iwuoha, is at the forefront of developing cutting-edge electrochemical sensors capable of detecting health biomarkers and environmental contaminants. These devices could revolutionise healthcare, particularly in underserved regions like rural Africa, by enabling early detection and continuous monitoring of non-communicable diseases such as diabetes, cancer and heart disease. "Most current medical interventions are designed for ex post facto implementation," Prof Baker explained. "The major shortcoming of modern medicine lies in the absence of continuous monitoring tools to inform medical practitioners of the early onset and progression of a disease." With recent investment from the Department of Science and Innovation (DSI) to establish an Electrochemical Sensors Node at UWC's NanoMicro Manufacturing Facility (NMMF), Prof Baker's team is now positioned to print and test these sensors on flexible substrates under real-life conditions. "We are bridging a crucial gap in healthcare knowledge and implementation," she explained. Prof Baker's work spans health, energy, and environmental sectors, with international collaborations accelerating innovation. A long-standing partnership with CY Paris University has led to joint research, student exchanges, and co-authored publications. "Collaborative research sharpens our skills and pushes us to think beyond our comfort zones." One of her most exciting projects, a biosensor for detecting uric acid in gout patients, has evolved into a potential global solution. Initially addressing gout prevalence in rural South Africa, the project now explores embedding sensors in shoe insoles for continuous biomarker monitoring, with partnerships forming between medical institutions and tech developers. While Prof Baker acknowledged progress for women in electrochemistry, she highlights systemic challenges. "Women often remain primary caregivers, facing career interruptions due to maternity leave and family demands - factors rarely accounted for in promotions," she noted. Her advice to institutions? "Surround yourself with leaders who embody excellence, kindness and fairness. We must create spaces where all can thrive." As Prof Baker continues to innovate in sensor technology and advocate for inclusivity, her work stands as a testament to resilience, collaboration, and the transformative power of science.

IOL News
4 days ago
- IOL News
Groundbreaking study reveals biological sex and genetic diversity in Paranthropus robustus
Dr Palesa Madupe, Dr Claire Koenig and Dr Ioannis Patramanis. Image: Victor Yan Kin Lee Researchers from the University of Cape Town (UCT) and the University of Copenhagen have achieved a scientific first by using 2-million-year-old protein traces to determine the biological sex and uncover previously hidden genetic variation in Paranthropus robustus, an extinct close relative of modern humans. Published in the journal Science, the research analysed ancient proteins extracted from fossilised teeth discovered in South Africa's Cradle of Humankind. The remarkable discovery represents some of the oldest human genetic data ever recovered from Africa and challenges established understandings of this early hominin. The study's co-lead, Dr Palesa Madupe, a research associate at UCT's Human Evolution Research Institute (HERI) and postdoctoral fellow at the University of Copenhagen's Globe Institute, is part of a powerful African cohort transforming palaeoanthropology from within. "Because we can sample multiple African Pleistocene hominin individuals classified within the same group, we're now able to observe not just biological sex, but for the first time genetic differences that might have existed among them," said Madupe. UCT's HERI played a central role in the research, with co-director Professor Rebecca Ackermann as a senior author, and contributions from co-director Robyn Pickering and multiple HERI research associates. Video Player is loading. Play Video Play Unmute Current Time 0:00 / Duration -:- Loaded : 0% Stream Type LIVE Seek to live, currently behind live LIVE Remaining Time - 0:00 This is a modal window. Beginning of dialog window. Escape will cancel and close the window. Text Color White Black Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan Transparency Transparent Semi-Transparent Opaque Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps Reset restore all settings to the default values Done Close Modal Dialog End of dialog window. Advertisement Video Player is loading. Play Video Play Unmute Current Time 0:00 / Duration -:- Loaded : 0% Stream Type LIVE Seek to live, currently behind live LIVE Remaining Time - 0:00 This is a modal window. Beginning of dialog window. Escape will cancel and close the window. Text Color White Black Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Background Color Black White Red Green Blue Yellow Magenta Cyan Transparency Opaque Semi-Transparent Transparent Window Color Black White Red Green Blue Yellow Magenta Cyan Transparency Transparent Semi-Transparent Opaque Font Size 50% 75% 100% 125% 150% 175% 200% 300% 400% Text Edge Style None Raised Depressed Uniform Dropshadow Font Family Proportional Sans-Serif Monospace Sans-Serif Proportional Serif Monospace Serif Casual Script Small Caps Reset restore all settings to the default values Done Close Modal Dialog End of dialog window. Next Stay Close ✕ The team used cutting-edge palaeoproteomic techniques and mass spectrometry to identify sex-specific variants of amelogenin, a protein found in tooth enamel. Two of the ancient individuals were conclusively male; the others, inferred through novel quantitative methods, were female. Paper co-lead and postdoctoral researcher at the Center for Protein Research, University of Copenhagen, Claire Koenig, explained: 'Enamel is extremely valuable because it provides information about both biological sex and evolutionary relationships. However, since identifying females relies on the absence of specific protein variants, it is crucial to rigorously control our methods to ensure confident results.' The university explained that unexpectedly, another enamel protein – enamelin, revealed genetic diversity among the four individuals. Two shared a particular variant, a third had a distinct one, and a fourth displayed both. Co-lead and postdoctoral research fellow at the University of Copenhagen's Globe Institute Ioannis Patramanis said while studying proteins, specific mutations are thought to be characteristic of a species. 'We were thus quite surprised to discover that what we initially thought was a mutation uniquely describing Paranthropus robustus was actually variable within that group,' said Patramanis. The university added that this revelation forces a rethink of how ancient hominin species are identified, showing genetic variation, not just skeletal traits, must be considered in understanding their complexity. According to the researchers, Paranthropus lived in Africa between 2.8 and 1.2 million years ago, walking upright and likely coexisting with early members of Homo. Though on a different evolutionary path, its story remains central to understanding human origins. Madupe added that this study not only advances palaeoproteomics in Africa, but also highlights the vital role of African scholars in rewriting human history. 'As a young African researcher, I'm honoured to have significantly contributed to such a high-impact publication as its co-lead. But it's not lost on me that people of colour have a long journey to go before it becomes commonplace more of us need to be leading research like this,' said Madupe. Get your news on the go, click here to join the Cape Argus News WhatsApp channel. Ackermann detailed that HERI was actively leading that shift and the institute launched programmes introducing palaeoproteomic techniques to a new generation of African scientists and is expanding training across the continent. 'We are excited about the capacity building that has come out of this collaboration. The future of African-led palaeoanthropology research is bright,' Ackerman said. Cape Argus