logo
Scientists Think Light May Hold the Memory of Ancient Cataclysms

Scientists Think Light May Hold the Memory of Ancient Cataclysms

Yahoo10-03-2025

According to Einstein's theory of general relativity, gravitational waves warp spacetime. In the process, they could imprint permanent changes, or 'gravitational memory,' on their surroundings.
Researchers now think that gravitational memory could be written on photons all over the cosmic microwave background—the oldest radiation in the universe.
Though gravitational memory is thought to be too subtle to be detected even by our most sensitive equipment, upcoming instruments might finally be able to pick up on a signal.
If two black holes crashed into each other billions of years ago, even though we weren't around to observe, could we find out?
Well, as it turns out, maybe we could. Einstein's theory of general relativity describe how the gravity of massive objects and extreme phenomena—such as black hole mergers and core-collapse supernovae (which sometimes end up as black holes)—causes ripples that permanently warp spacetime and traverse the void at the speed of light. These ripples are known as gravitational waves, and the effects of these waves thought to be permanently imprinted on their surroundings as 'gravitational memory.'
Evidence of gravitational memory, however, continues to elude telescopes. Even the Laser Interferometer Gravitational Wave Observatory (LIGO)—which first detected gravitational waves in 2015—has not been able to pick up a memory signal. Fast-forward a decade, and a team of researchers from the Niels Bohr Institute in Denmark and the University of Valencia in Spain now have an idea of where we could search to finally find these mysterious gravitational memory imprints, which they described in a study uploaded to the preprint server arXiv.
Cataclysmic events leave their mark on the cosmic microwave background (CMB)—the remnant of the immense shockwave sent through space by the Big Bang and the oldest detectable radiation in the universe. The researchers behind this new paper think that the CMB is probably embedded with 'memories' of black hole mergers as a result of the gravitational waves that resulted from those mergers leaving behind temperature changes in CMB radiation.
'Photons traveling through space may experience permanent distortions and deflection caused by the gravitational wave memory from one such merger event,' the team said in the paper. '[There is] a resulting change in photon wavelength.'
Gravitational waves interacting with particles of light, or photons, can shift their direction, velocity, or angular momentum. As a result, photons affected by those permanent changes are essentially taking gravitational memory with them as they travel. If we were to somehow detect the changes made to the photons, we could analyze these effects and find out what kinds of events caused them.
Gravitational memory could reveal such things as distances to merging black holes, masses, and the forces of collisions. It could also illuminate more about how the early universe evolved. In the case of a core-collapse supernova, the death of a massive star that has burned all its energy and collapses in a violent explosion, gravitational memory could give us insight into properties no telescope or spacecraft can observe.
Because oscillations of waves from gravitational memory are predicted to have much smaller amplitudes than the gravitational waves they come from—never mind the additional noise from human activity on Earth—they have not yet been detected. Even the most hypersensitive equipment is still not sensitive enough. NASA's upcoming LISA (Laser Interferometer Space Antenna) observatory might be our best shot at finding evidence.
'Though hidden below a myriad of other signals,' the researchers wrote, 'the entire merger history of black holes is marked on [the CMB, which is] the oldest image of our universe.'
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

The Universe's Largest Map Has Arrived, And You Can Stargaze Like Never Before
The Universe's Largest Map Has Arrived, And You Can Stargaze Like Never Before

Yahoo

time2 hours ago

  • Yahoo

The Universe's Largest Map Has Arrived, And You Can Stargaze Like Never Before

After many hours of staring unblinking at a small patch of sky, JWST has given us the most detailed map ever obtained of a corner of the Universe. It's called the COSMOS-Web field, and if that sounds familiar, it's probably because an incredible image of it dropped just a month ago. That, however, was just a little taste of what has now come to pass. The full, interactive map and all the data have just dropped, a map that vastly outstrips the famous Hubble Ultra Deep Field's 10,000 galaxies. The new map contains nearly 800,000 galaxies – hopefully heralding in a new era of discovery in the deepest recesses of the Universe. "Our goal was to construct this deep field of space on a physical scale that far exceeded anything that had been done before," says physicist Caitlin Casey of the University of California Santa Barbara, who co-leads the COSMOS collaboration with Jeyhan Kartaltepe of the Rochester Institute of Technology. "If you had a printout of the Hubble Ultra Deep Field on a standard piece of paper, our image would be slightly larger than a 13-foot by 13-foot-wide mural, at the same depth. So it's really strikingly large." JWST is our best hope for understanding the Cosmic Dawn, the first billion or so years after the Big Bang, which took place around 13.8 billion years ago. This epoch of the Universe is extremely difficult to observe: it's very far away, and very faint. Because the Universe is expanding, the light that travels to us from greater distances is stretched into redder wavelengths. With its powerful resolution and infrared capabilities, JWST was designed for just these observations: finding the faint light from the dawn of time which informs us on the processes that gave rise to the Universe we see around us today. The COSMOS-Web image covers a patch of sky a little bigger than the area of 7.5 full Moons, and peers back as far as 13.5 billion years, right into the time when the opaque primordial fog that suffused the early Universe was beginning to clear. There, the researchers are looking not just for early galaxies, they're looking for an entire cosmic ecosystem – an interactive gravitational dance of objects bound by the cosmic web of dark matter that spans the entire Universe. JWST data collected to date indicates that even with Hubble data, we've barely scratched the surface of what lurks within the Cosmic Dawn. "The Big Bang happens and things take time to gravitationally collapse and form, and for stars to turn on. There's a timescale associated with that," Casey says. "And the big surprise is that with JWST, we see roughly ten times more galaxies than expected at these incredible distances. We're also seeing supermassive black holes that are not even visible with Hubble." This profusion of well-formed galaxies hasn't just surprised astronomers – it's given them a whopping great puzzle to solve. According to our current understanding of galaxy evolution, not enough time had elapsed since the Big Bang for them to have formed. Even one is a bit of a head-scratcher – but the numbers in which JWST is finding them just boggle the mind. With access to datasets free and available to everyone who wants to take a crack, however, we may get a few answers. "A big part of this project is the democratization of science and making tools and data from the best telescopes accessible to the broader community," Casey says. "The best science is really done when everyone thinks about the same data set differently. It's not just for one group of people to figure out the mysteries." Papers on the data have been submitted to the Astrophysical Journal and Astronomy & Astrophysics. Meanwhile, you can head over to the COSMOS-Web interactive website and muck about zooming through the Universe nearly all the way back to the beginning of time. Giant Jets Bigger Than The Milky Way Seen Shooting From Black Hole Humanity Has Just Glimpsed Part of The Sun We've Never Seen Before 'City-Killer' Asteroid Even More Likely to Hit The Moon in 2032

Giant Jets Bigger Than The Milky Way Seen Shooting From Black Hole
Giant Jets Bigger Than The Milky Way Seen Shooting From Black Hole

Yahoo

time4 hours ago

  • Yahoo

Giant Jets Bigger Than The Milky Way Seen Shooting From Black Hole

A supermassive black hole in the early Universe has been spotted blasting out powerful jets of plasma that are at least twice as long as the Milky Way is wide. Its host galaxy is a quasar called J1601+3102, and we're seeing it as it was less than 1.2 billion years after the Big Bang. Spanning 215,000 light-years from end to end, this is the largest structure of its kind seen in those early stages of the Universe's formation, and astronomers think it can answer some questions about how they grow. "We were searching for quasars with strong radio jets in the early Universe, which helps us understand how and when the first jets are formed and how they impact the evolution of galaxies," explains astrophysicist Anniek Gloudemans of the National Science Foundation's NOIRLab. Jets are a particularly interesting supermassive black hole behavior. When there is enough material close to a supermassive black hole in the center of a galaxy, it swirls around, forming a disk of material that feeds into the black hole, drawn in by its extreme gravity. That feeding often produces a quasar, blazing with light as the swirling material is heated by friction and gravity to temperatures of millions of degrees. Not all the material falls onto the black hole beyond escape, though. Some of it gets diverted along the magnetic field lines outside the event horizon and accelerated to the black hole's poles, where it is launched into space with tremendous speed. These eruptions of material form jets, and they blast out into space for huge distances. The longest we've found to date are 23 million light-years from end to end, much later in the lifetime of the Universe. However, they only emit light in radio waves, which makes them a little tricky to see. To identify J1601+3102, Gloudemans and her colleagues had to combine observations from multiple telescopes, including the Low Frequency Array (LOFAR) Telescope in Europe, Gemini North in Hawaii, and the optical Hobby-Eberly Telescope in Texas. These observations didn't just reveal the extent of J1601+3102's jets, they allowed the researchers to study the black hole. The amount of light emitted by the quasar activity can be analyzed to reveal the black hole's mass. It's just 450 million times the mass of the Sun, a relatively modest size for a quasar black hole. And it's not scarfing down matter at a particularly high rate, either. These properties suggest that quasars could be more varied than we generally assume. "Interestingly, the quasar powering this massive radio jet does not have an extreme black hole mass compared to other quasars," Gloudemans says. "This seems to indicate that you don't necessarily need an exceptionally massive black hole or accretion rate to generate such powerful jets in the early Universe." The discovery was detailed in The Astrophysical Journal Letters. Humanity Has Just Glimpsed Part of The Sun We've Never Seen Before 'City-Killer' Asteroid Even More Likely to Hit The Moon in 2032 The Center of Our Universe Does Not Exist. A Physicist Explains Why.

'People thought this couldn't be done': Scientists observe light of 'cosmic dawn' with a telescope on Earth for the first time ever
'People thought this couldn't be done': Scientists observe light of 'cosmic dawn' with a telescope on Earth for the first time ever

Yahoo

time15 hours ago

  • Yahoo

'People thought this couldn't be done': Scientists observe light of 'cosmic dawn' with a telescope on Earth for the first time ever

When you buy through links on our articles, Future and its syndication partners may earn a commission. For the first time, scientists have used Earth-based telescopes to peer back into the cosmic dawn — an era more than 13 billion years ago when light from the first stars began reshaping our universe. The residual light from this ancient epoch is millimeters in wavelength and extremely faint, meaning that although space-based observatories have been able to peer into it, the signal is drowned out by the electromagnetic radiation in Earth's atmosphere before ground-based telescopes can detect the primordial light. But now, by deploying a specially designed telescope, scientists at the Cosmology Large Angular Scale Surveyor (CLASS) project have detected traces that the first stars left on the background light of the Big Bang. They published their findings June 11 in The Astrophysical Journal. "People thought this couldn't be done from the ground," study co-author Tobias Marriage, CLASS project leader and a professor of physics and astronomy at Johns Hopkins University, said in a statement. "Astronomy is a technology-limited field, and microwave signals from the Cosmic Dawn are famously difficult to measure. Ground-based observations face additional challenges compared to space. Overcoming those obstacles makes this measurement a significant achievement." The CLASS observatory sits at an altitude of 16,860 feet (5,138 meters) in the Andes mountains of northern Chile's Atacama desert. The telescope, which obtained its first light in 2016, is tuned to survey the sky at microwave frequencies. Besides enabling it to map 75% of the night sky, the telescope's unprecedented sensitivity lets it receive microwave signals from the cosmic dawn, or the first billion years of the universe's life. For the first 380,000 years after the Big Bang, the universe was filled with a cloud of electrons so dense that light couldn't travel across it. But our cosmos eventually expanded and cooled, and the electrons were captured by protons to form hydrogen atoms. Related: Astronomers discover the 1st-ever merging galaxy cores at cosmic dawn These hydrogen atoms not only enabled microwave-wavelength light to move freely — filling space with the cosmic microwave background (CMB) — but also, where it was dense enough, collapsed under gravity and ignited to form the first stars. The light from these stars then reionized pockets of unclumped hydrogen gas, separating their electrons so that some collided with light from the CMB, causing it to become polarized. The signal from this polarized portion of the CMB is a vital part of the cosmological puzzle; without it, our picture of the early universe remains muddy. And while efforts from past space-based telescopes, such as NASA's Wilkinson Microwave Anisotropy Probe (WMAP) and the European Space Agency's Planck space telescope, have filled in parts of this gap, their pictures contain noise and, being satellites, could not be tweaked and improved once deployed in orbit. RELATED STORIES —Atacama Telescope reveals earliest-ever 'baby pictures' of the universe: 'We can see right back through cosmic history' —'We had less than a 2% chance to find this': James Webb telescope uncovers baffling 'Big Wheel,' one of the most massive galaxies in the early universe —1st supernovas may have flooded the early universe with water — making life possible just 100 million years after the Big Bang "Measuring this reionization signal more precisely is an important frontier of cosmic microwave background research," co-author Charles Bennett, a physics professor at Johns Hopkins who led the WMAP space mission, said in the statement. To arrive at these observations, the researchers compared CLASS telescope data with that from the Planck and WMAP missions, narrowing down a common signal for the polarized microwave light. "For us, the universe is like a physics lab. Better measurements of the universe help to refine our understanding of dark matter and neutrinos, abundant but elusive particles that fill the universe," Bennett added. "By analyzing additional CLASS data going forward, we hope to reach the highest possible precision that's achievable."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store