Proof That Adult Brains Make New Neurons Settles Scientific Controversy
The results, published on Thursday in Science, are the first signs that cells with the capacity to turn into neurons, called neural precursor cells, exist in adult human brains. 'Now we have very strong evidence that the whole process is there in humans, from the precursor cells to the immature neurons,' says Gerd Kempermann, a neurobiologist at the Dresden University of Technology, who was not involved in the study.
Throughout gestation, our brain churns out new neurons until it reaches the 100 billion we start life with, and that count declines as we age. As early as 1962, studies in rats had shown that neurogenesis continued throughout the animals' life. Others found that young neurons existed in adult human brains. But it was unclear whether these 'immature' neurons were truly new—or whether humans just start life with a collection of them, after which they slowly develop during adulthood.
[Sign up for Today in Science, a free daily newsletter]
One thing was clear from these studies: if adult neurogenesis happened anywhere, it was in the hippocampus, a deep-brain structure known for its role in memory processing and storage. But even in the human hippocampus, neuroscientists had not yet found the precursor cells that divide and develop to turn into new neurons.
Researchers at the Karolinska Institute in Sweden had previously found immature neurons in the human brain. Marta Paterlini, a neuroscientist at the institute, and her colleagues, set out to pin down how those neurons came to be. Paterlini and her team took advantage of a new combination of techniques to examine immature neurons and neural precursor cells in the hippocampi of six young children, whose brain had been donated to science upon their death. From more than 100,000 cells, the researchers sequenced RNA—bits of genetic information used to carry out actions within each cell. These markers come together to form a sort of molecular fingerprint that can be used to predict a cell's stage of life. 'It's not a matter of one marker defining active neurogenesis; it's the combination of many markers,' says Paterlini, who is co-lead author of the new study.
After identifying these markers in young brains, the team then searched for those same signatures in 19 postmortem brains ranging from 13 to 78 years old. All of the brains contained immature neurons except one. The researchers also found neural precursor cells in each of the child brains and in 12 of the 19 adolescent and adult brains.
Two adults stood out for having many more neural precursor cells and immature neurons than the rest. The younger of these two people had lived with epilepsy, which could potentially connect to the apparent abundance of neurogenesis. In mice, higher levels of neurogenesis can cause seizures, though the connection to epilepsy in humans is still unclear.
The team suspects that neurogenesis happens in other parts of the adult brain, too. In mice, new neurons are regularly made in the olfactory bulb (a structure that processes smells) as well—but the same hasn't been shown in humans. Paterlini plans to investigate whether adult neurogenesis might happen there or elsewhere in the brain.
Some research in mice suggests that disrupted neurogenesis is linked to Alzheimer's disease and depression. Learning more about how neurogenesis happens—and whether the process can be altered—could prove helpful for understanding a range of disorders and diseases, says the study's co-lead author Ionut Dumitru, a neuroscientist at the Karolinska Institute.
With the question of adult neurogenesis resolved, scientists can begin learning more about what neurogenesis does in the brain and how it affects various disorders. 'This is an important paper because it should finally put this all to rest,' Kempermann says. 'And we can now concentrate on the question: How do these cells in the human contribute to brain function?'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
3 hours ago
- CNN
Earth is as far away from the sun as it ever gets. So why is it so hot?
The peak of summer is approaching for those of us in the Northern Hemisphere, but as we prepare for more sunshine and sweltering temperatures, our planet is spinning at its farthest point from the sun. On Thursday at 3:55 p.m. ET, our planet reached what's called the aphelion — the most distant point in its orbit around the sun, roughly 3 million miles farther away than when it's closest. This happens every year in early July, which might sound backward. If we're farthest from the sun, shouldn't it be cooler? People tend to associate proximity with warmth, so it seems natural to assume the seasons are caused by changes in how far Earth is from the sun. But the planet's distance has little to do with it. The real reason for seasonal temperature changes lies in the fact that Earth is tilted. Our planet spins at an angle — about 23.5 degrees — which means different parts of the globe receive more (or less) sunlight depending on the time of year. In July, the Northern Hemisphere is tilted toward the sun, bringing longer days and higher sun angles that lead to more direct sunlight — all of which produce summer-like heat. In contrast, the shape of Earth's orbit plays only a minor role. Although it's slightly oval-shaped rather than perfectly circular, the difference between our closest and farthest points from the sun is relatively small. Right now, Earth is about 3.1 million miles farther from the sun than it is in early January when it reaches perihelion, its closest point. Compared to its average distance of 93 million miles, that's only about a 3.3% difference. Because sunlight spreads out as it travels, even a relatively small change in distance results in about a 7% drop in the amount of solar energy reaching the planet. That's tiny compared to the effect of Earth's tilt. Just how big is the difference? Let's look at a few examples. In cities like Houston, New Orleans and Phoenix — near 30 degrees north in latitude — the amount of solar energy reaching Earth's atmosphere in summer is more than double what those cities receive in winter. Farther north, around 40 degrees, the seasonal swing is even more dramatic. Cities like New York, Denver and Columbus see solar energy climb from about 145 watts per square meter in winter to 430 in summer — nearly a 300% difference. So, while it's true that Earth is receiving less energy from the sun right now, that detail barely registers compared to the power of the planet's tilt. A slight angle in Earth's spin does far more to shape our seasonal patterns than a few million miles of extra distance ever could. In the end, it's not how close we are to the sun that makes summer feel like summer — it's how we're angled toward it.


CNN
3 hours ago
- CNN
Earth is as far away from the sun as it ever gets. So why is it so hot?
FacebookTweetLink The peak of summer is approaching for those of us in the Northern Hemisphere, but as we prepare for more sunshine and sweltering temperatures, our planet is spinning at its farthest point from the sun. On Thursday at 3:55 p.m. ET, our planet reached what's called the aphelion — the most distant point in its orbit around the sun, roughly 3 million miles farther away than when it's closest. This happens every year in early July, which might sound backward. If we're farthest from the sun, shouldn't it be cooler? People tend to associate proximity with warmth, so it seems natural to assume the seasons are caused by changes in how far Earth is from the sun. But the planet's distance has little to do with it. The real reason for seasonal temperature changes lies in the fact that Earth is tilted. Our planet spins at an angle — about 23.5 degrees — which means different parts of the globe receive more (or less) sunlight depending on the time of year. In July, the Northern Hemisphere is tilted toward the sun, bringing longer days and higher sun angles that lead to more direct sunlight — all of which produce summer-like heat. In contrast, the shape of Earth's orbit plays only a minor role. Although it's slightly oval-shaped rather than perfectly circular, the difference between our closest and farthest points from the sun is relatively small. Right now, Earth is about 3.1 million miles farther from the sun than it is in early January when it reaches perihelion, its closest point. Compared to its average distance of 93 million miles, that's only about a 3.3% difference. Because sunlight spreads out as it travels, even a relatively small change in distance results in about a 7% drop in the amount of solar energy reaching the planet. That's tiny compared to the effect of Earth's tilt. Just how big is the difference? Let's look at a few examples. In cities like Houston, New Orleans and Phoenix — near 30 degrees north in latitude — the amount of solar energy reaching Earth's atmosphere in summer is more than double what those cities receive in winter. Farther north, around 40 degrees, the seasonal swing is even more dramatic. Cities like New York, Denver and Columbus see solar energy climb from about 145 watts per square meter in winter to 430 in summer — nearly a 300% difference. So, while it's true that Earth is receiving less energy from the sun right now, that detail barely registers compared to the power of the planet's tilt. A slight angle in Earth's spin does far more to shape our seasonal patterns than a few million miles of extra distance ever could. In the end, it's not how close we are to the sun that makes summer feel like summer — it's how we're angled toward it.


CNN
3 hours ago
- CNN
Earth is as far away from the sun as it ever gets. So why is it so hot?
FacebookTweetLink The peak of summer is approaching for those of us in the Northern Hemisphere, but as we prepare for more sunshine and sweltering temperatures, our planet is spinning at its farthest point from the sun. On Thursday at 3:55 p.m. ET, our planet reached what's called the aphelion — the most distant point in its orbit around the sun, roughly 3 million miles farther away than when it's closest. This happens every year in early July, which might sound backward. If we're farthest from the sun, shouldn't it be cooler? People tend to associate proximity with warmth, so it seems natural to assume the seasons are caused by changes in how far Earth is from the sun. But the planet's distance has little to do with it. The real reason for seasonal temperature changes lies in the fact that Earth is tilted. Our planet spins at an angle — about 23.5 degrees — which means different parts of the globe receive more (or less) sunlight depending on the time of year. In July, the Northern Hemisphere is tilted toward the sun, bringing longer days and higher sun angles that lead to more direct sunlight — all of which produce summer-like heat. In contrast, the shape of Earth's orbit plays only a minor role. Although it's slightly oval-shaped rather than perfectly circular, the difference between our closest and farthest points from the sun is relatively small. Right now, Earth is about 3.1 million miles farther from the sun than it is in early January when it reaches perihelion, its closest point. Compared to its average distance of 93 million miles, that's only about a 3.3% difference. Because sunlight spreads out as it travels, even a relatively small change in distance results in about a 7% drop in the amount of solar energy reaching the planet. That's tiny compared to the effect of Earth's tilt. Just how big is the difference? Let's look at a few examples. In cities like Houston, New Orleans and Phoenix — near 30 degrees north in latitude — the amount of solar energy reaching Earth's atmosphere in summer is more than double what those cities receive in winter. Farther north, around 40 degrees, the seasonal swing is even more dramatic. Cities like New York, Denver and Columbus see solar energy climb from about 145 watts per square meter in winter to 430 in summer — nearly a 300% difference. So, while it's true that Earth is receiving less energy from the sun right now, that detail barely registers compared to the power of the planet's tilt. A slight angle in Earth's spin does far more to shape our seasonal patterns than a few million miles of extra distance ever could. In the end, it's not how close we are to the sun that makes summer feel like summer — it's how we're angled toward it.