
Fossil of oldest known modern bird discovered in Antarctica
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.
CNN —
A near complete skull fossil found in Antarctica has revealed the oldest known modern bird — a mallard duck-size creature related to the waterfowl that live by lakes and oceans today, a new study has found.
The 68 million-year-old fossil belongs to an extinct species of bird known as Vegavis iaai that lived at the end of the Cretaceous period, when Tyrannosaurus rex dominated North America and just before a city-size asteroid hit Earth, dooming the dinosaurs to extinction.
Birds that lived among the dinosaurs were barely recognizable when compared with today's bird species. Many sported bizarre features such as toothed beaks and long, bony tails.
Vegavis, however, would have been ducklike in size and similar ecologically to aquatic bird species such as loons, said Christopher Torres, an assistant professor of biology at the University of the Pacific in California and lead author of the study published Wednesday in the journal Nature.
'So this bird was a foot-propelled pursuit diver. It used its legs to propel itself underwater as it swam, and something that we were able to observe directly from this new skull was it had jaw musculature (that) was associated with snapping its mouth shut underwater in pursuit of fish. And that is a lifestyle that we observe broadly among loons and grebes,' he said.
Paleontologists first described Vegavis 20 years ago, but many were skeptical that it represented a modern or crown bird species. Most modern bird fossils that had been unearthed at that point dated to after the dinosaur-killing asteroid struck off the coast of what's now Mexico 66 million years ago. Many scientists assumed that modern-looking birds began to evolve after and perhaps in response to the mass extinction.
Previous Vegavis fossil specimens also lacked a complete skull, said study coauthor Patrick O'Connor, a professor of anatomical sciences at Ohio University. Skulls are where the most characteristic features of modern birds, such as a lack of teeth and an enlarged premaxillary bone in the upper beak, can be identified.
The fossil examined in the study, collected during a 2011 expedition by the Antarctic Peninsula Paleontology Project, was found encased in rock that dated back 68.4 to 69.2 million years and displayed modern characteristics, such as a toothless beak, according to the study.
'The new fossil shows Vegavis is undoubtedly a modern bird (something that was challenged in the past) and is an exceptional find preserving a strange and surprising morphology,' said Juan Benito Moreno, a fellow in the department of earth sciences at the University of Cambridge and an expert on fossil birds, in an email.
'The new skull of Vegavis shows a very specialized morphology for diving and fish eating, more so than I would have expected,' added Moreno, who was not involved in the study but was involved in the discovery of the only other known modern bird species from the Cretaceous.
A survivor of mass extinction?
The brain shape revealed by the new fossil, which researchers scanned using computerized tomography to create a three-dimensional reconstruction, was also characteristic of modern birds, according to the study.
Together, these features place Vegavis in the group that includes all modern birds, and the fossil skull represents 'the earliest member of this entire radiation that we see around us today, that consists of 11,000 bird species,' O'Connor said.
While Vegavis resembled present-day waterfowl in some ways, other features didn't fit the mold. For instance, the study noted that the skull preserves traces of a slender, pointed beak powered by enhanced jaw muscles, a feature that is more like diving birds than other known waterfowl.
'Antarctica at 69 million years ago didn't look like it did today. It was actually forested. It was a cool, temperate climate based on most of our modeling, and this animal, we recovered it in a marine rock unit so we would envision that it was doing this pursuit diving in a nearshore, marine environment,' O'Connor added.
Torres, who was a postdoctoral fellow studying avian paleontology at Ohio University when he conducted the research, said the discovery of the Vegavis fossil in Antarctica and a fossil of an extinct bird species known as Conflicto antarcticus from a nearby location dating from shortly after dinosaurs' extinction would allow paleontologists to investigate how some animals survived the cataclysmic event.
'What happens to the survivors? What determines, number one, what a survivor is, and number two, what are the survivors going to look like after one of these catastrophic events?' he said.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


CNN
an hour ago
- CNN
A ‘dragon prince' dinosaur is redrawing the tyrannosaur family tree
Scientists have identified a previously unknown 86 million-year-old dinosaur species that fills an early gap in the fossil record of tyrannosaurs, revealing how they evolved to become massive apex predators. Researchers analyzing the species' remains have named it Khankhuuluu mongoliensis, which translates to 'dragon prince of Mongolia,' because it was small compared with its much larger relatives such as Tyrannosaurus rex, whose name means 'the tyrant lizard king.' The newly identified dinosaur was the closest known ancestor of tyrannosaurs and likely served as a transitional species from earlier tyrannosauroid species, according to the findings published Wednesday in the journal Nature. Based on a reexamination of two partial skeletons uncovered in Mongolia's Gobi Desert in 1972 and 1973, the new study suggests that three big migrations between Asia and North America led tyrannosauroids to diversify and eventually reach a gargantuan size in the late Cretaceous Period before going extinct 66 million years ago. 'This discovery of Khankhuuluu forced us to look at the tyrannosaur family tree in a very different light,' said study coauthor Darla Zelenitsky, associate professor within the department of Earth, energy, and environment at the University of Calgary, in an email. 'Before this, there was a lot of confusion about who was related to who when it came to tyrannosaur species. What started as the discovery of a new species ended up with us rewriting the family history of tyrannosaurs.' Tyrannosaurs, known scientifically as Eutyrannosaurians, bring to mind hulking dinosaurs like Tyrannosaurus rex and Tarbosaurus, which weighed multiple metric tons and could take down equally large prey. With short arms and massive heads, they walked on two legs and boasted sharp teeth, Zelenitsky said. But tyrannosaurs didn't start out that way. They evolved from smaller dinosaurs before dominating the landscapes of North America and Asia between 85 million and 66 million years ago, the researchers said. While Tarbosaurus, an ancestor of T. rex, clocked in at between 3,000 and 6,000 kilograms (6,613 pounds and 13,227 pounds), the fleet-footed Khankhuuluu mongoliensis likely weighed only around 750 kilograms (1,653 pounds), spanned just 2 meters (6.5 feet) at the hips and 4 meters (13 feet) in length, according to the study authors. Comparing the two dinosaurs would be like putting a horse next to an elephant —Khankhuuluu would have reached T. rex's thigh in height, Zelenitsky said. 'Khankhuuluu was almost a tyrannosaur, but not quite,' Zelenitsky said. 'The snout bone was hollow rather than solid, and the bones around the eye didn't have all the horns and bumps seen in T. rex or other tyrannosaurs.' Khankhuuluu mongoliensis, or a closely related ancestor species, likely migrated from Asia to North America across a land bridge between Alaska and Siberia that connected the continents 85 million years ago, Zelenitsky said. Because of this migrant species, we now know that tyrannosaurs actually evolved first on the North American continent and remained there exclusively over the next several million years, she said. 'As the many tyrannosaur species evolved on the continent, they became larger and larger.' Due to the poor fossil record, it's unclear what transpired in Asia between 80 million to 85 million years ago, she added. While some Khankhuuluu may have remained in Asia, they were likely replaced later on by larger tyrannosaurs 79 million years ago. Meanwhile, another tyrannosaur species crossed the land bridge back to Asia 78 million years ago, resulting in the evolution of two related but very different subgroups of tyrannosaurs, Zelenitsky said. One was a gigantic, deep-snouted species, while the other known as Alioramins was slender and small. These smaller dinosaurs have been dubbed 'Pinocchio rexes' for their long, shallow snouts. Both types of tyrannosaurs were able to live in Asia and not compete with each other because the larger dinosaurs were top predators, while Alioramins were mid-level predators going after smaller prey — think cheetahs or jackals in African ecosystems today, Zelenitsky said. 'Because of their small size, Alioramins were long thought to be primitive tyrannosaurs, but we novelly show Alioramins uniquely evolved smallness as they had 'miniaturized' their bodies within a part of the tyrannosaur family tree that were all otherwise giants,' Zelenitsky said. One more migration happened as tyrannosaurs continued to evolve, and a gigantic tyrannosaur species crossed back into North America 68 million years ago, resulting in Tyrannosaurus rex, Zelenitsky said. 'The success and diversity of tyrannosaurs is thanks to a few migrations between the two continents, starting with Khankhuuluu,' she said. 'Tyrannosaurs were in the right place at the right time. They were able to take advantage of moving between continents, likely encountering open niche spaces, and quickly evolving to become large, efficient killing machines.' The new findings support previous research suggesting that Tyrannosaurus rex's direct ancestor originated in Asia and migrated to North America via a land bridge and underscore the importance of Asia in the evolutionary success of the tyrannosaur family, said Cassius Morrison, a doctoral student of paleontology at University College London. Morrison was not involved in the new research. 'The new species provides essential data and information in part of the family tree with few species, helping us to understand the evolutionary transition of tyrannosaurs from small/ medium predators to large apex predators,' Morrison wrote in an email. The study also shows that the Alioramini group, once considered distant relatives, were very close cousins of T. rex. What makes the fossils of the new species so crucial is their age — 20 million years older than T. rex, said Steve Brusatte, professor and personal chair of Palaeontology and Evolution at the University of Edinburgh. Brusatte was not involved in the new study. 'There are so few fossils from this time, and that is why these scientists describe it as 'murky,'' Brusatte said. 'It has been a frustrating gap in the record, like if you suspected something really important happened in your family history at a certain time, like a marriage that started a new branch of the family or immigration to a new country, but you had no records to document it. The tyrannosaur family tree was shaped by migration, just like so many of our human families.' With only fragments of fossils available, it's been difficult to understand the variation of tyrannosaurs as they evolved, said Thomas Carr, associate professor of biology at Carthage College in Wisconsin and director of the Carthage Institute of Paleontology. Carr was not involved in the new research. But the new study sheds light on the dinosaurs' diversity and clarifies which ones existed when — and how they overlapped with one another, he said. More samples from the fossil record will provide additional clarity, but the new work illustrates the importance of reexamining fossils collected earlier. 'We know so much more about tyrannosaurs now,' Carr said. 'A lot of these historical specimens are definitely worth their weight in gold for a second look.' When the fossils were collected half a century ago, they were only briefly described at the time, Brusatte said. 'So many of us in the paleontology community knew that these Mongolian fossils were lurking in museum drawers, waiting to be studied properly, and apt to tell their own important part of the tyrannosaur story,' he said. 'It's almost like there was a non-disclosure agreement surrounding these fossils, and it's now expired, and they can come out and tell their story.'
Yahoo
an hour ago
- Yahoo
What a Spiral in the Oort Cloud Could Mean for Life on Earth
A routine planetarium show at New York's Hayden Planetarium just triggered a potentially historic discovery in astrophysics. While curating scenes for 'Encounters in the Milky Way,' a team of scientists and animators stumbled across something surprising: a spiral structure hidden within the data modeling the Oort Cloud, which is one of the most mysterious regions in our solar system. The Oort Cloud, theorized to be a spherical shell of icy objects orbiting far beyond Neptune, has long remained unseen. Yet when astrophysicist Jackie Faherty noticed the unexpected shape during a simulation, she called in Oort Cloud expert David Nesvorny to investigate, according to a CNN report. It wasn't an animation glitch. It was real data. Nesvorny, who had generated the simulation, admitted he'd never viewed his data in three-dimensional Cartesian coordinates. When he did, the spiral structure emerged clearly. 'Weird way to discover things,' he said. 'I should know my data better.' This accidental find prompted Nesvorny to run weeks of simulations on NASA's Pleiades Supercomputer. Every model confirmed it: a spiral, caused not by the sun's gravity alone, but by the galactic tide—the pull of the Milky Way's own gravitational field acting on the outermost parts of our solar system. Ultimately, he published the findings in The Astrophysics Journal. The discovery reshapes long-held assumptions. While the outer Oort Cloud might still be spherical, the inner part appears to twist in a spiral pattern, suggesting our solar system is more dynamically connected to the galaxy than once thought. Still, verifying the spiral won't be easy. The icy bodies in the Oort Cloud are too small and distant to observe directly. Even with the powerful new Vera C. Rubin Observatory, scientists expect to find only a handful—far short of the numbers needed to fully confirm the structure. But as Faherty put it, the dome of a planetarium can now double as a tool of discovery. 'This is science that hasn't had time to reach your textbook yet,' she said. What a Spiral in the Oort Cloud Could Mean for Life on Earth first appeared on Men's Journal on Jun 11, 2025


CNN
2 hours ago
- CNN
A ‘dragon prince' dinosaur is redrawing the tyrannosaur family tree
Scientists have identified a previously unknown 86 million-year-old dinosaur species that fills an early gap in the fossil record of tyrannosaurs, revealing how they evolved to become massive apex predators. Researchers analyzing the species' remains have named it Khankhuuluu mongoliensis, which translates to 'dragon prince of Mongolia,' because it was small compared with its much larger relatives such as Tyrannosaurus rex, whose name means 'the tyrant lizard king.' The newly identified dinosaur was the closest known ancestor of tyrannosaurs and likely served as a transitional species from earlier tyrannosauroid species, according to the findings published Wednesday in the journal Nature. Based on a reexamination of two partial skeletons uncovered in Mongolia's Gobi Desert in 1972 and 1973, the new study suggests that three big migrations between Asia and North America led tyrannosauroids to diversify and eventually reach a gargantuan size in the late Cretaceous Period before going extinct 66 million years ago. 'This discovery of Khankhuuluu forced us to look at the tyrannosaur family tree in a very different light,' said study coauthor Darla Zelenitsky, associate professor within the department of Earth, energy, and environment at the University of Calgary, in an email. 'Before this, there was a lot of confusion about who was related to who when it came to tyrannosaur species. What started as the discovery of a new species ended up with us rewriting the family history of tyrannosaurs.' Tyrannosaurs, known scientifically as Eutyrannosaurians, bring to mind hulking dinosaurs like Tyrannosaurus rex and Tarbosaurus, which weighed multiple metric tons and could take down equally large prey. With short arms and massive heads, they walked on two legs and boasted sharp teeth, Zelenitsky said. But tyrannosaurs didn't start out that way. They evolved from smaller dinosaurs before dominating the landscapes of North America and Asia between 85 million and 66 million years ago, the researchers said. While Tarbosaurus, an ancestor of T. rex, clocked in at between 3,000 and 6,000 kilograms (6,613 pounds and 13,227 pounds), the fleet-footed Khankhuuluu mongoliensis likely weighed only around 750 kilograms (1,653 pounds), spanned just 2 meters (6.5 feet) at the hips and 4 meters (13 feet) in length, according to the study authors. Comparing the two dinosaurs would be like putting a horse next to an elephant —Khankhuuluu would have reached T. rex's thigh in height, Zelenitsky said. 'Khankhuuluu was almost a tyrannosaur, but not quite,' Zelenitsky said. 'The snout bone was hollow rather than solid, and the bones around the eye didn't have all the horns and bumps seen in T. rex or other tyrannosaurs.' Khankhuuluu mongoliensis, or a closely related ancestor species, likely migrated from Asia to North America across a land bridge between Alaska and Siberia that connected the continents 85 million years ago, Zelenitsky said. Because of this migrant species, we now know that tyrannosaurs actually evolved first on the North American continent and remained there exclusively over the next several million years, she said. 'As the many tyrannosaur species evolved on the continent, they became larger and larger.' Due to the poor fossil record, it's unclear what transpired in Asia between 80 million to 85 million years ago, she added. While some Khankhuuluu may have remained in Asia, they were likely replaced later on by larger tyrannosaurs 79 million years ago. Meanwhile, another tyrannosaur species crossed the land bridge back to Asia 78 million years ago, resulting in the evolution of two related but very different subgroups of tyrannosaurs, Zelenitsky said. One was a gigantic, deep-snouted species, while the other known as Alioramins was slender and small. These smaller dinosaurs have been dubbed 'Pinocchio rexes' for their long, shallow snouts. Both types of tyrannosaurs were able to live in Asia and not compete with each other because the larger dinosaurs were top predators, while Alioramins were mid-level predators going after smaller prey — think cheetahs or jackals in African ecosystems today, Zelenitsky said. 'Because of their small size, Alioramins were long thought to be primitive tyrannosaurs, but we novelly show Alioramins uniquely evolved smallness as they had 'miniaturized' their bodies within a part of the tyrannosaur family tree that were all otherwise giants,' Zelenitsky said. One more migration happened as tyrannosaurs continued to evolve, and a gigantic tyrannosaur species crossed back into North America 68 million years ago, resulting in Tyrannosaurus rex, Zelenitsky said. 'The success and diversity of tyrannosaurs is thanks to a few migrations between the two continents, starting with Khankhuuluu,' she said. 'Tyrannosaurs were in the right place at the right time. They were able to take advantage of moving between continents, likely encountering open niche spaces, and quickly evolving to become large, efficient killing machines.' The new findings support previous research suggesting that Tyrannosaurus rex's direct ancestor originated in Asia and migrated to North America via a land bridge and underscore the importance of Asia in the evolutionary success of the tyrannosaur family, said Cassius Morrison, a doctoral student of paleontology at University College London. Morrison was not involved in the new research. 'The new species provides essential data and information in part of the family tree with few species, helping us to understand the evolutionary transition of tyrannosaurs from small/ medium predators to large apex predators,' Morrison wrote in an email. The study also shows that the Alioramini group, once considered distant relatives, were very close cousins of T. rex. What makes the fossils of the new species so crucial is their age — 20 million years older than T. rex, said Steve Brusatte, professor and personal chair of Palaeontology and Evolution at the University of Edinburgh. Brusatte was not involved in the new study. 'There are so few fossils from this time, and that is why these scientists describe it as 'murky,'' Brusatte said. 'It has been a frustrating gap in the record, like if you suspected something really important happened in your family history at a certain time, like a marriage that started a new branch of the family or immigration to a new country, but you had no records to document it. The tyrannosaur family tree was shaped by migration, just like so many of our human families.' With only fragments of fossils available, it's been difficult to understand the variation of tyrannosaurs as they evolved, said Thomas Carr, associate professor of biology at Carthage College in Wisconsin and director of the Carthage Institute of Paleontology. Carr was not involved in the new research. But the new study sheds light on the dinosaurs' diversity and clarifies which ones existed when — and how they overlapped with one another, he said. More samples from the fossil record will provide additional clarity, but the new work illustrates the importance of reexamining fossils collected earlier. 'We know so much more about tyrannosaurs now,' Carr said. 'A lot of these historical specimens are definitely worth their weight in gold for a second look.' When the fossils were collected half a century ago, they were only briefly described at the time, Brusatte said. 'So many of us in the paleontology community knew that these Mongolian fossils were lurking in museum drawers, waiting to be studied properly, and apt to tell their own important part of the tyrannosaur story,' he said. 'It's almost like there was a non-disclosure agreement surrounding these fossils, and it's now expired, and they can come out and tell their story.'