The Big Dipper Holds a Celestial Surprise—Here's How to See the 'Horse and Rider'
Summer is a good time to view the Big Dipper because it's high in the northern sky during the evening. The Big Dipper is not a constellation itself, but an asterism within the constellation Ursa Major. It's visible throughout the year in the Northern Hemisphere, but it's most prominent during the spring and summer.
Related: A New Dwarf Planet Has Joined Our Solar System's Family—Meet Pluto's 'Extreme Cousin'
This means that there's a better chance you'll be able to spot some of the hidden gems found in this star grouping. For example, the middle star in the Dipper's handle, known as Mizar, has a fainter companion by the name of Alcor, which is derived from Arabic, meaning faint one.
Mizar and Alcor were known as the "Horse and Rider" as early as the ancient Arabian writer Al Firuzabadi. You can spot them with the naked eye, if you look carefully, but binoculars provide a better view.
You'll also want to see the Big Dipper while you can. Of the seven stars that make up the recognizable grouping, five are hurtling through space at roughly the same speed and the same direction, according Space.com. But two of the seven stars appear to be rushing at greater speeds in the opposite direction. This will slowly alter the form of the Big Dipper. But don't worry, it'll stay the same for about the next 25,000 years.
Read the original article on Martha Stewart
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Venus and Jupiter conjunction 2025: How to see two iconic planets meet in the morning sky
When you buy through links on our articles, Future and its syndication partners may earn a commission. If you set your alarm clock for 4 a.m. local time this week and head outside to a location with a clear and unobstructed view of the eastern horizon, you'll be able to catch sight of the two brightest planets, Venus and Jupiter. The winter constellation Orion will be off to their right. During this upcoming week, you'll be able to watch as they get closer to each other with each passing morning. On Aug.6, the two planets will be separated by 5.8 degrees; just a little more than a half fist apart. By Aug. 10, the gap between the two will have closed to just two degrees. Remember that your clenched fist held at arm's length measures roughly 10 degrees. The time frame from Aug. 12 through Aug. 20 will be an exceptional time for predawn sky watchers, first with an eye-catching pairing of Venus and Jupiter on Aug. 12, followed a week later when the waning crescent moon drops by to join them. Venus and Jupiter will appear closest together on Tuesday morning, Aug. 12. The moment of closest approach (just 0.86 of a degree; less than twice the apparent diameter of the moon) will come when this "dynamic duo" is hovering above the east-northeast horizon across much of North America. Venus will dazzle at magnitude -4.0, while Jupiter, itself shining at a brilliant magnitude of -1.9, will appear to glow to the upper left of Venus. Your best view will come one-quarter up from the east-northeast horizon about 45 minutes before sunrise. They are both high enough at dawn to present reasonably steady images (on good mornings) but most interesting this month is to see the globes of both together in one fairly wide telescopic field-of-view on Aug. 11 or Aug. 12. Jupiter is more than twice the apparent diameter of Venus, and yet Venus is a far more effective reflector of sunlight because it is more than seven times closer to the sun compared to Jupiter. The moon pays a visit Then, one week later, on Tuesday, Aug. 19, although the gap between Venus and Jupiter will have widened to 7 degrees, a narrow crescent moon, 15 percent illuminated by the sun, will join them, making for a striking triangular configuration in the morning twilight. On this morning, the moon will appear about 8 degrees directly above Jupiter. Then, come the very next morning (Wednesday, Aug. 20), the crescent moon will have noticeably thinned to 8% and will appear to hover just 4.5 degrees to the upper left of Venus. Adding to the spectacle on both mornings will be the phenomenon known as Earthshine; sunlight reflected from Earth illuminates the night side of the moon, making its whole disk visible. Here is one of nature's beautiful sights and fits the old saying, "the old moon in the new moon's arms." In a pair of binoculars on Aug. 20, the moon will appear three-dimensional, like an eerie yellow and blue ball with diamond-like Venus blazing to its upper left. Upcoming get-togethers When Venus and Jupiter next get together, it will be in the evening sky late next spring, a few weeks before Independence Day, though not as close as what we will see this month. Generally speaking, conjunctions between Venus and Jupiter, as seen from the Earth, take place at mean intervals of 13 months, or more precisely 398.88 days, known as the synodic period of Jupiter (the time it takes Jupiter to return to the same position relative to the sun in the sky as seen from Earth). Check out the table below for future Venus-Jupiter pairings for the rest of this decade. 2026 June 9 Evening sky 1.6 degrees 2027 Aug. 26 Evening sky 0.5 degree 2028 Nov. 9 Morning sky 0.6 degree 2029 Sept. 7 Evening sky 1.7 degrees 2030 Nov. 20 Morning sky 0.6 degree Sometimes, the interval between two successive Venus-Jupiter conjunctions is only ten months, as in the case of August 2025 and June 2026, but in other situations, the interval can be as much as 15 months (such as from August 2027 to November 2028). Inevitably, some conjunctions cannot be observed because they occur too close to the sun in the sky. This will be the case, for instance, for the conjunctions in 2027 and 2030. On these occasions, the planets will be positioned (respectively) only 4 and 8 degrees from the blindingly bright solar disc. The 24-year cycle The sidereal revolution periods (sidereal means "with respect to the stars") of Venus, Earth and Jupiter are — respectively — 224.70, 365.25 and 4,332.58 days. If we multiply the sidereal period of Venus by 39 (8763.3 days), Earth by 24 (8766 days) and Jupiter by 2 (8665.16 days) they come very close to replicating the same type of conjunction under nearly identical conditions (occurring approximately about a week later in the calendar) every 24 years. Check out the table below. Provided are the dates, the separation between the two planets in angular degrees and the elongation or angular distance of the two planets from the sun. Date Separation Elongation 1929 July 14 2.2 degrees 45.1 degrees 1953 July 23 1.9 degrees 43.2 degrees 1977 July 30 1.6 degrees 41.0 degrees 2001 Aug. 5 1.2 degrees 38.6 degrees 2025 Aug. 12 0.9 degrees 35.2 degrees Notice how the two planets are getting progressively closer to each other with each passing 24-year cycle. The closest observable conjunction between the two will come on September 4, 2121, when they will be separated by a mere 0.13 degrees, or about one-quarter the apparent diameter of the moon, while low in the dawn twilight. TOP TELESCOPE PICK Want to see the Venus and Jupiter conjunction for yourself? The Celestron NexStar 8SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 8SE review. But this 24-cycle cannot go on forever, because while Jupiter can appear in any part of the sky, Venus can never get more than 47 degrees from the sun; so generally speaking, these Venus-Jupiter get-togethers occurring at 24-year intervals can last for no more than roughly 900 years. This current cycle began back in 1881, when an unusual triple conjunction between the two planets took place. The first two get-togethers came on Feb. 20 and May 14. But it was the third conjunction on June 20, 1881, in the morning sky, that began the current 24-year cycle. This will continue until the very last, an evening apparition on Jan. 30, 2746. Joe Rao serves as an instructor and guest lecturer at New York's Hayden Planetarium. He writes about astronomy for Natural History magazine, Sky and Telescope and other publications.
Yahoo
an hour ago
- Yahoo
Milky Way and zodiacal light glow above telescopes in Chile
When you buy through links on our articles, Future and its syndication partners may earn a commission. Recently, the Chilean night sky was illuminated by the glow of the Milky Way galaxy as it was seen above the domes of telescopes at the Cerro Tololo Inter-American Observatory (CTIO), a facility of the National Science Foundation's (NSF) NOIRLab. What is it? A cone of zodiacal light intersects the iconic Milky Way, creating an x-shape in the night sky. NOIRLab highlighted this x-shape in a recent LinkedIn post, saying: " X marks the spot at Cerro Tololo!" Zodiacal light extends in a triangular shape from Earth's horizon along the ecliptic, the apparent annual path of the sun across the sky, serving as the baseline for positions of the planets and zodiac constellations. This special light is the reflection of sunlight off particles and dust in the solar system. Astronomers can study zodiacal light to map the distributions and possible origins of cosmic dust, revealing further insights about the processes happening in our solar system. Where is it? This image was taken at the CTIO facility, around 310 miles (500 km) north of Santiago, Chile at an elevation of 7,200 feet (2200 meters). Its location allows it to avoid light pollution from urban areas. Why is it amazing? As a major astronomical research facility, the CTIO hosts nearly 40 telescopes at it site, which offers exceptionally clear dark skies to peer deep into space. These telescopes are used for many different projects, from studying near-Earth asteroids to space debris to exoplanets. CTIO's mission is to provide world-class observing capabilities to the global astronomical community, supporting key discoveries while helping us to further understand more about our universe. Want to learn more? You can read more about telescopes based in Chile and night sky photography. Solve the daily Crossword
Yahoo
2 hours ago
- Yahoo
Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery
When the James Webb Space Telescope first came online in 2022, it immediately spotted something astronomers had never seen before: "little red dots" peppering the ancient expanse of deep space, originating from around when the universe was just one billion years old. Ever since, we've struggled to explain what these faint signals could be. The prevailing theory is that they're some kind of extremely compact galaxy. But at only two percent of the diameter of the Milky Way, the distribution of stars would have to be impossibly dense, perhaps more so than our current laws of physics allow. They're also too faint to be produced by a quasar, a type of supermassive black hole that is actively devouring matter, which it causes to heat up and glow. Moreover, the black holes would be "overmassive" for such a small galaxy, scientists argue. Now, famed Harvard astronomer Avi Loeb (or infamous, depending on how you view his speculative theories regarding aliens) and his colleague Fabio Pacucci believe they have an answer. In a new study published in the Astrophysical Journal Letters, the pair reinforce the idea that the family of red oddities are, in fact, galaxies — but are unusually tiny because they haven't started spinning up to speed yet. It's a hypothesis rooted in one of the leading theories for galaxy formation, which holds that these structures form in "halos" of dark matter, the invisible substance thought to account for 85 percent of all mass in the cosmos. While we can't see or interact with dark matter, it does exert a significant gravitational influence, which explains how the largest structures in the cosmos came together and took shape. In the study, the astronomers propose that the diminutive galaxies formed in halos that just so happened to be among the slowest spinning in the cosmos, with 99 percent of halos spinning faster. The idea, in principle, is simple. If you held out a piece of rope in one hand and started spinning in place, the rope would stretch out and reach farther. But if you slowed down, the rope would slump to the ground. This hypothesis would explain why we're only seeing the dots at such a nascent period of the universe. Over time, the halos would inevitably speed up, and their constituent galaxies would expand. "Dark matter halos are characterized by a rotational velocity: some of them spin very slowly, and others spin more rapidly," Loeb said in a statement about the work. "We showed that if you assume the little red dots are typically in the first percentile of the spin distribution of dark matter halos, then you explain all their observational properties." It's a compelling theory — but it's not the only game in town. Recently, two teams of astronomers found clues that what we're witnessing may actually be an entirely new class of cosmic object: "black hole stars." Their work suggests the glowing dots are an active supermassive black hole surrounded by a vast and thick shell of gas. The intense radiation of the black hole heats up the shell, which absorbs most of the emissions, dimming the light to an outside observer. In many ways, it resembles a star blown up to epic proportions — except, instead of nuclear fusion powering the center, there's a voracious black hole churning through matter. Loeb and Pacucci's theory doesn't address whether these slow-spinning galaxies have a black hole at their center, but suggests that they could form one. "Low-spin halos tend to concentrate mass in the center, which makes it easier for a black hole to accrete matter or for stars to form rapidly," Pacucci said in the statement. The luminous red dots, he added, "might help us understand how the first black holes formed and co-evolved with galaxies in the early universe." More on space: Astronomers in Awe of Terrifying "Eye of Sauron" That's Pointed Straight at Earth Solve the daily Crossword