logo
Antibiotic resistance dates back millions of years, with important lessons for modern medicine

Antibiotic resistance dates back millions of years, with important lessons for modern medicine

Yahoo07-05-2025

Yahoo is using AI to generate takeaways from this article. This means the info may not always match what's in the article. Reporting mistakes helps us improve the experience.
Yahoo is using AI to generate takeaways from this article. This means the info may not always match what's in the article. Reporting mistakes helps us improve the experience.
Yahoo is using AI to generate takeaways from this article. This means the info may not always match what's in the article. Reporting mistakes helps us improve the experience. Generate Key Takeaways
Antibiotics are widely considered one of the most important advances in the history of medicine. Their introduction into clinical practice during the 1940s marked a major milestone in the control of infectious diseases, and these medicines have since improved human health and prolonged life expectancy.
Today, bacterial resistance to antibiotics has become a global threat, and presents a major challenge to medicine. Antibiotics' extensive and often indiscriminate use in medicine, veterinary clinics and agriculture has created the ideal conditions for antibiotic-resistant bacteria to emerge.
However, this phenomenon is older than previously thought. Bacteria already had resistance mechanisms long before the discovery and introduction of antibiotics into clinical practice. This indicates that antibiotic resistance is a much more complex, widespread and deep-rooted ancestral evolutionary phenomenon than initially assumed.
Studies have documented antibiotic resistance mechanisms in micro-organisms isolated from natural habitats, where human influence is minimal or non-existent. These environments include deep underground layers and the ocean floor, as well as ancient environments such as isolated caves and permafrost.
Interestingly, many of the resistance mechanisms described in these untouched environments – whose origins date back thousands or even millions of years – are similar or even identical to those observed in present-day pathogenic bacteria. This suggests that the conservation and transmission of resistance mechanisms throughout evolution provides a selective advantage.
Surviving in the ice
The resistance genes found in permafrost samples from 30,000 years ago bear a striking resemblance to those found today. These strains were as resistant as more modern ones that have been observed to resist β-lactam antibiotics, tetracyclines and vancomycin.
Staphylococcus strains resistant to aminoglycosides and β-lactams have also been isolated from 3.5 million year old permafrost samples.
There are even older examples, such as Lechuguilla Cave in New Mexico, USA, an environment considered isolated for 4 million years. Nevertheless, a 2016 study found Streptomyces and Paenibacillus bacteria in Lecheguilla that were resistant to most of the antibiotics used in clinical practice today.
'Methicillin-resistant Staphylococcus aureus' is the full name for a multidrug-resistant bacterium that causes serious infections. A 2022 study concluded that certain strains were resistant long before the use of this group of antibiotics – it was their adaptation to hedgehogs infected by similar antibiotic-producing fungi that gave them a survival advantage.
An arms race to survive
Research has revealed that competition for resources and adaptation to different habitats were key factors in the evolution of antibiotic resistance.
In pre-drug environments, natural antibiotics not only played an ecological role in inhibiting the growth of competitors, but also supported the survival of producer species. In addition, very small amounts of antibiotics acted as communication molecules, influencing the interactions and balance of microbial communities.
This dynamic environment favoured the evolution of defensive strategies in antibiotic-exposed micro-organisms, whether antibiotic-producing or co-existing. This, in turn, drove the diversification and spread of resistance mechanisms over time.
However, the presence of these mechanisms in isolated, pre-antibiotic-era environments raises questions about how resistance has originated and spread throughout microbial evolution. The study of these processes is key to understanding their impact on the current antibiotic resistance crisis.
Looking forwards by looking backwards
It is now suggested that antibiotic resistance genes may have been transmitted first from environmental micro-organisms to human commensal organisms, and then to pathogens. This process of transfer from the environment to the human environment is random: the more prevalent a resistance mechanism is in the environment, the more likely it is to be transferred.
Reservoirs of resistance in the environment can accelerate bacterial evolution towards multiple drug resistance under antibiotic pressure. It is therefore crucial to consider the vast diversity of these resistance genes within microbial populations when developing or implementing new strategies to combat antibiotic resistance.
As Winston Churchill said, 'the longer you can look back, the further you can look forward'. This reflection underlines the importance of studying the past in order to understand and anticipate future risks. Researching ancestral resistance not only provides information on the evolutionary history of resistance genes, it can also help us predict how they will evolve in the future.
This knowledge allows us to anticipate potential resistance mechanisms, which improves our ability to meet future challenges in the fight against antibiotic resistance.
Este artículo fue publicado originalmente en The Conversation, un sitio de noticias sin fines de lucro dedicado a compartir ideas de expertos académicos.
Lee mas:
M. Paloma Reche Sainz receives funding from the Spanish Ministry of Science and Innovation through the National Plan PID2023-150116OB-I00, where she forms part of the research team.
Rubén Agudo Torres receives funding from the Ministry of Science and Innovation. He has previously received funding from the Spanish Ministry of Economy, Industry and Competitiveness, and the European Commission's Horizon 2020 programme.
Sergio Rius Rocabert reveices funding from the Spanish Ministry of Science and Innovation through the National Plan PID2023-150116OB-I00, where he forms part of the research team.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

For 9 Days, Earth Was Sending Out Mysterious Signals. Now We Know What They Were.
For 9 Days, Earth Was Sending Out Mysterious Signals. Now We Know What They Were.

Yahoo

time18 hours ago

  • Yahoo

For 9 Days, Earth Was Sending Out Mysterious Signals. Now We Know What They Were.

"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Strange signals coming from the Arctic in 2023 were assumed to be a seiche (trapped water with waves sloshing back and forth), but this was never confirmed. Previous instruments used to measure seismic weather phenomena were not able to pick up enough information, but NASA's SWOT satellite eventually found that the signal actually was from a seiche caused by a landslide. Reconstructions of what the weather was like during the days SWOT picked up the signal also show that it couldn't have been anything but a seiche. As fascinating as bizarre signals from other planets can be—teaching us about earthquakes on Mars or auroras in the skies of Jupiter—sometimes even weirder signals come from weather extremes happening right here on Earth. For nine days in 2023, an unknown seismic pulse was generated by the Earth every 90 seconds. It first appeared that September, vanished, and then returned in October. The signals began after a landslide triggered by a megatsunami in Dickson Fjord, Greenland, and was thought to have been produced by a seiche, or standing wave. This wave had probably been stirred up by the tsunami and then trapped by ice in the fjord—but there was no way to prove it. Satellite observations were able to document avalanches and the tsunamis they caused, and scientists collected further data in a research station. There was just one problem—the hypothesized seiche was eluding detection. It remained a mystery, even though studies at the time found seismic data that seemed to align with the sloshing motions of standing waves. So, researcher Thomas Monahan of Oxford University decided to take a closer look. Using data from the KaRIn (Ka-band Radar Interferometer) instrument on board NASA's Surface Water Ocean Topography (SWOT) satellite—an international collaboration capable of high-resolution measurements that extended into Dickson fjord—Monahan and his team finally found evidence for a seiche whose waves were slowly losing intensity. 'Based on the seismic attribution, and systematic ruling out of other dynamic phenomena, we conclude that the observed variability in the SWOT data is consistent with that of a slowly decaying seiche,' the team wrote in a study recently published in Nature Communications. Seiches can occur in lakes and other enclosed (or partially enclosed) bodies of water. The tsunami unleashed in Dickson Fjord had enough strength to leave powerful winds and sudden atmospheric pressure shifts in its wake, pushing water from one end of the enclosure to the other. The water then sloshed back and forth, oscillating for anywhere from hours to days after winds ceased. Tsunamis are often seismic phenomena, and the very long period (VLP) seismic signal that came from the fjord was the aftermath of a tsunamigenic landslide. Previous attempts at recording evidence for this particular seiche had been thwarted by the limitations of satellite altimeters, which did not pick up data during extended gaps between observations. They were also not able to record the differences in the height of waves beyond the area directly under the satellite. They were, however, able to get an especially accurate read on the water below. The landslides in Dickson Fjord happened right when SWOT was transitioning to its Science phase, during which it would orbit and survey most of the planet's surface from an altitude of 890 km (553 miles) for 21 days. This orbit was purposely out of sync with the Sun to lower the chances of misidentifying signal frequencies. The researchers went through the data from every pass the satellite made over the region for the weeks in September and October and used this data to create maps of the fjord, modeling it how would have behaved during different times after the landslide and the height differences between waves (which reached up to two meters, or about 6.5 feet). Reconstructions of weather conditions ruled out all other possible causes behind the signal, and convinced scientists that it could only have been caused by a seiche. 'This study shows how we can leverage the next generation of satellite earth observation technologies to study these processes,' Monahan said in a recent press release. 'SWOT is a game changer for studying oceanic processes in regions such as fjords which previous satellites struggled to see into.' You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?

Scientists Just Discovered a New Type of Magnetism
Scientists Just Discovered a New Type of Magnetism

Yahoo

time2 days ago

  • Yahoo

Scientists Just Discovered a New Type of Magnetism

"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Researchers have found a way to merge the properties of ferromagnetic materials (whose atoms spin in the same direction) and antiferromagnetic materials (whose atoms spin in opposite directions and cancel out magnetism). By applying just a small voltage, they were able to switch the direction in which the atoms of nickel iodide, an antiferromagnetic material, were spinning. The ability to manipulate the spins of atoms could allow for the development of computer chips whose storage is based on spin rather than charge, allowing for much more space and longevity. Magnetism can be a strange and powerful force. In an almost supernatural way, magnets stick to surfaces with no adhesives, which is why games like Etch-a-Sketch and Operation have fascinated generations of kids. Most of what we see every day is ferromagnetism (think refrigerator magnets), the phenomenon describing how metals like iron and nickel are magnetized in a magnetic field and thus adhere to certain surfaces. There are also paramagnetic materials, like aluminum, which have a weak and almost unnoticeable attraction to magnets. There's even antiferromagnetism—a type of magnetism in which magnetic atoms or ions in a material cancel their magnetism out if they end up next to each other. And then there is a magnetism that is none of the above. By merging properties of ferromagnetic and antiferromagnetic materials, MIT physicists created a new kind magnetism that may someday revolutionize the memory chips that store data in laptops and smartphones. It's called 'p-wave magnetism,' and it makes use of the spin of atoms in a material rather than their charge to create magnetic properties. '[This discovery] opens new opportunities for developing ultrafast, energy-efficient and high-endurance antiferromagnetic spintronic devices,' the researchers said in a study recently published in Nature. The find is particularly huge for the field of spintronics. It might sound like a DJ spinning tracks on an alien planet—and, to be fair, it's almost as far out—but it's actually a scientific discipline centered around manipulating the spins of atoms in ferromagnetic and antiferromagnetic materials. Atoms in ferromagnets are known to spin in the same direction, and as these atoms spin, so do their electrons. Those electrons, spinning furiously around their nuclei, generate magnetic fields that cause ferromagnets stick to some metals. On the other hand, neighboring atoms in antiferromagnets have opposite spins, which means the electrons generating their magnetic fields are spinning in opposite directions. Antiferromagnets do not show visible magnetization, because the spins of their electrons and atoms cancel each other out—but the MIT team found a way around that. They synthesized nickel iodide (NiI2) in a lab and observed the behavior of the electrons in its atoms. Like a ferromagnet, the electrons did have one spin orientation they preferred, and like an antiferromagnet, there were enough electrons spinning in the opposite direction to cancel out magnetism. But there was something more. It turned out that nickel atoms form spiral patterns that mirror each other, which made it possible to manipulate the spins of those atoms with a voltage. This caused some atoms to switch their spiral path from spinning left to right, and vice versa, turning the material into a p-wave magnet. And the electrons had their spins switched right along with the atoms as a whole in the same direction of that voltage. This is how spintronics could seriously level up computer chips. With data taking the form of an electron's spin rather than its charge, it leaves much more space for storage. Spintronics could mean chips able to store amounts of information orders of magnitude greater than anything currently available. 'The reported results represent the first observation of an electrically-switchable unconventional [opposite direction] magnet,' the researchers said. 'These findings open a new frontier to realize symmetry-protected voltage-based switching of non-relativistic spin polarization in a compensated magnet.' You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?

Mathematicians Are Getting Closer to Translating an ‘Alien Language'
Mathematicians Are Getting Closer to Translating an ‘Alien Language'

Yahoo

time2 days ago

  • Yahoo

Mathematicians Are Getting Closer to Translating an ‘Alien Language'

"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: First proposed in 2012, the Inter-universal Teichmüller Theory (IUT) is a devilishly difficult math theory that experts describe as an 'alien language.' Although only a few mathematicians around the world understand any small portion of IUT, a 28-year-old tech worker recently made significant gains toward decoding the theory. This could help make progress in understanding math enigmas like the ABC Conjecture and Fermat's Last Theorem. It's likely that you won't understand any of the mathematics in this article, but you'd be in good company—most mathematicians don't understand it, either. That's because we're talking about the famously difficult Inter-universal Teichmüller Theory (IUT), first proposed across 2,000 pages in 2012 by Japanese mathematician Shinichi Mochizuki and vigorously debated in the 13 years since: is it a revolutionary way of understanding mathematics or a complete waste of time? The best way to think about IUT is that it's a completely novel understanding of mathematics that makes a drastic departure from the theorems taught in universities around the world. According to mathematics expert Kato Fumimot, speaking to the South China Morning Post (SCMP), the theory is almost an otherworldly creation. 'Imagine an alien coming to Earth who can only speak an extraterrestrial language,' Fumimot told the SCMP. 'If he were to give a speech in front of a large group of Earthlings, surely no one would understand what he is saying, and no matter how many times he repeats it, there would be no progress.' Whole branches of mathematics have been set up to try to interpret the secrets of IUT. According to some estimates, only two dozen or so mathematicians in the world can even begin to understand this mysterious language. However, it seems that a promising new mathematician may have recently been added to their number. Zhou Zhongpeng isn't a learned professor or noted mathematician, but a former doctoral student turned tech worker—one that happens to be obsessed with learning IUT. After decoding key elements of IUT and proposing novel refinements and explanations of the ABC conjecture, he sent his work—uploaded to the preprint server arXiv—to the theory's creator, Mochizuki, and Ivan Fesenko, one of the few mathematicians who has made some headway in understanding IUT. According to SCMP and Interesting Engineering, Fesenko immediately reached out to Zhou and told him to fly to his campus in Westlake University in China. Zhou promptly quit his tech job and began working with Fesenko. If mathematicians at large are ever able to truly learn IUT, they could be able to find more efficient solutions to some of the field's most devilish problems. Take, for example, Fermat's Last Theorem. Formulated in 1637 and named after French mathematician Pierre de Fermat, the theorem states that no three positive integers (a, b, and c) can satisfy the equation an + bn = cn where 'n' is greater than two. Although this seems simple, it took more than 350 years to prove it, and the solution ran 130 pages long. Zhou's work could solve such a theorem in fewer steps and also prove useful for other mathematical enigmas. For now, IUT remains a mostly an 'alien language.' And because so many of the theory's adherents live in Japan, New Scientist says that, effectively, the proof is only true in that country. Only time will tell whether that claim spreads to eventually envelop the world. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life?

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store