World's largest telescope unveils first images of galaxies in stunning detail
More than two decades in the making, the giant U.S.-funded telescope sits perched at the summit of Cerro Pachon in central Chile, where dark skies and dry air provide ideal conditions for observing the cosmos. The first-look images captured star-forming regions as well as distant galaxies.
One of them is a composite of 678 exposures taken over just seven hours, capturing the Trifid Nebula and the Lagoon Nebula — both several thousand light-years from Earth — glowing in vivid pinks against orange-red backdrops.
The image reveals these stellar nurseries within our Milky Way in unprecedented detail, with previously faint or invisible features now clearly visible.
Another image offers a sweeping view of the Virgo Cluster of galaxies.
The team also released a video dubbed the "cosmic treasure chest," which begins with a close-up of two galaxies before zooming out to reveal approximately 10 million more.
"The Rubin Observatory is an investment in our future, which will lay down a cornerstone of knowledge today on which our children will proudly build tomorrow," said Michael Kratsios, director of the White House Office of Science and Technology Policy.
Equipped with an advanced 8.4-meter telescope and the largest digital camera ever built, the Rubin Observatory is supported by a powerful data-processing system.
Later this year, it will begin its flagship project, the Legacy Survey of Space and Time (LSST). Over the next decade, it will scan the night sky nightly, capturing even the subtlest visible changes with unmatched precision.
Elana Urbach, a commissioning scientist on the project, told CBS News partner BBC News that one of the observatory's main goals is to "understand the history of the universe." That would mean having the ability to see galaxies or supernova explosions that occurred billions of years ago, according to BBC News.
"So, we really need very sharp images," Urbach said.
The design of the telescope allows it to capture a lot of light, and, in turn, observe objects that are very far away, Guillem Megias, an optics expert at the Rubin Observatory, told BBC News. Megias noted that, in astronomy, "really far away ... means they come from earlier times."
The observatory is named after pioneering American astronomer Vera C. Rubin, whose research provided the first conclusive evidence for the existence of dark matter — a mysterious substance that does not emit light but exerts gravitational influence on galaxies.
Dark energy refers to the equally mysterious and immensely powerful force believed to be driving the accelerating expansion of the universe. Together, dark matter and dark energy are thought to make up 95 percent of the cosmos, yet their true nature remains unknown.
The observatory, a joint initiative of the U.S. National Science Foundation and Department of Energy, has also been hailed as one of the most powerful tools ever built for tracking asteroids.
In just 10 hours of observations, the Rubin Observatory discovered 2,104 previously undetected asteroids in our solar system, including seven near-Earth objects — all of which pose no threat.
For comparison, all other ground- and space-based observatories combined discover about 20,000 new asteroids per year.
Rubin is also set to be the most effective observatory at spotting interstellar objects passing through the solar system.
More images from the observatory are expected to be released later Monday.
Kidney dialysis industry accused of maximizing profits over patients
Pentagon officials reveal new details about U.S. strikes on Iran's nuclear sites
Netanyahu reacts to U.S. strikes on Iranian nuclear sites
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
36 minutes ago
- Yahoo
Natural compound found in popular hot drink could protect brain against Alzheimer's, study finds
Scientists have identified two natural compounds that could help reverse ageing in brain cells and remove harmful protein buildup, raising hopes for a non-drug approach to treat Alzheimer's disease. The research, published in the journal GeroScience, identifies two natural compounds, nicotinamide – a form of vitamin B3 – and an antioxidant found in green tea called epigallocatechin gallate, which help restore a key molecule that fuels energy production in brain cells. Researchers found that nerve cells treated with these compounds not only experienced reversal of age-related decline but also an enhanced ability to clear away amyloid protein clusters, a hallmark feature of Alzheimer's. 'As people age, their brains show a decline in neuronal energy levels, which limits the ability to remove unwanted proteins and damaged components,' said Gregory Brewer, lead author of the study. 'We found that restoring energy levels helps neurons regain this critical cleanup function,' Dr Brewer said. Researchers used a fluorescent molecule to track live guanosine triphosphate levels in neurons from aged mice showing signs of Alzheimer's. Scientists found that the levels of energy-rich molecules GTP declined with age – particularly in the cells' mitochondria – leading to impaired elimination of cells with damaged components in a process called autophagy. While it is known that autophagy, the cell's natural clean-up process, plays a key role in maintaining the health of tissues and organs, what part of ageing causes impairment in this process remains elusive. When aged nerve cells were treated for just 24 hours with the study molecules nicotinamide and epigallocatechin gallate, the GTP levels were restored to levels typically seen in younger cells. 'Our results reveal age and AD-related neuronal GTP energy deficits that impair autophagy,' scientists wrote. The molecules also improved energy metabolism within these cells, as well as efficient clearance of amyloid beta clusters. 'By supplementing the brain's energy systems with compounds that are already available as dietary supplements, we may have a new path toward treating age-related cognitive decline and Alzheimer's disease,' Dr Brewer said. 'This study highlights GTP as a previously under-appreciated energy source driving vital brain functions,' he added. Researchers cautioned that more studies are required to find the best way to administer the compounds as treatment. A recent study also showed that nicotinamide was not very effective when taken orally due to its inactivation in the bloodstream. However, the findings point to promising strategies to rescue neurons in the brain's hippocampus from energy deficits related to ageing and Alzheimer's disease, researchers say. Solve the daily Crossword


New York Times
an hour ago
- New York Times
‘Alien: Earth' Season 1, Episode 3 Recap: Weird Science
Season 1, Episode 3: 'Metamorphosis' The 'Alien' franchise explores two overlapping nightmares. The first is the Alien, a cold and implacable force against which humanity is defenseless. The second is humanity itself, which through technological hubris and old-fashioned greed might well invite its own destruction. Against the first we are helpless; with the second, we are all too eager to help. Where, then, does this leave a man like Morrow? The cyborg science officer aboard the doomed deep-space research vessel the Maginot may or may not have the freedom to make his own decisions regarding his mission to preserve the hostile alien life forms the ship was carrying. It seems highly possibile that his paymasters at the Weyland-Yutani Corporation have hacked his brain and forced him to comply. He also speaks of those awful aliens as his life's work, however, the mission to which he gave up 65 years of his life, in frozen slumber, in order to see it through. Everyone he knew in his old life, from his daughter to his crew, is now dead. The eyeball octopus, the bloodsucker, the dangling tentacle plant, the barfing bug and xenomporph are all he has left. Even when Ms. Yutani waves him off, he tells her that he will get those specimens back. Whether motivation or compulsion drove him to seal himself inside a safe room and allow the monsters to slaughter his fellow voyagers, the decision clearly weighs on Morrow. While downloading the ship's data into his computer-augmented brain — a process that involves a set of light-up tubes and, evidently, a good deal of pain — Morrow tries to explain his plight to Slightly and Smee (Jonathan Ajayi), the childlike human-synthetic hybrids left behind to guard a cache of Alien eggs. 'There's a feeling you get,' he says, 'when the monsters come, and you can't — you don't — help.' The dilemma leaves him wishing he were the robot the hybrids suspect him to be, since being fully mechanical would relieve him of the moral burden of what he has done. But when he is interrupted by Kirsh, the hybrids' synthetic guardian, and he sees one of the Alien eggs beginning to hatch, he makes a leap into the chasm created by his crashed ship and disappears. For a time, at least, it seems as if Morrow's mission is a failure. Kirsh and the hybrids secure the alien specimens and bring them back to the island headquarters of the genius inventor Boy Kavalier and his upstart mega-corporation, Prodigy. (The company's teddy-bear logo is particularly noxious considering its conduct.) Kavalier is especially smitten with the xenomorph corpse, seeing an ocean of potential in that hunk of obsidian exoskeleton and acidic blood. Want all of The Times? Subscribe.
Yahoo
2 hours ago
- Yahoo
Astronomers Say They've Finally Solved the 'Little Red Dots' Mystery
When the James Webb Space Telescope first came online in 2022, it immediately spotted something astronomers had never seen before: "little red dots" peppering the ancient expanse of deep space, originating from around when the universe was just one billion years old. Ever since, we've struggled to explain what these faint signals could be. The prevailing theory is that they're some kind of extremely compact galaxy. But at only two percent of the diameter of the Milky Way, the distribution of stars would have to be impossibly dense, perhaps more so than our current laws of physics allow. They're also too faint to be produced by a quasar, a type of supermassive black hole that is actively devouring matter, which it causes to heat up and glow. Moreover, the black holes would be "overmassive" for such a small galaxy, scientists argue. Now, famed Harvard astronomer Avi Loeb (or infamous, depending on how you view his speculative theories regarding aliens) and his colleague Fabio Pacucci believe they have an answer. In a new study published in the Astrophysical Journal Letters, the pair reinforce the idea that the family of red oddities are, in fact, galaxies — but are unusually tiny because they haven't started spinning up to speed yet. It's a hypothesis rooted in one of the leading theories for galaxy formation, which holds that these structures form in "halos" of dark matter, the invisible substance thought to account for 85 percent of all mass in the cosmos. While we can't see or interact with dark matter, it does exert a significant gravitational influence, which explains how the largest structures in the cosmos came together and took shape. In the study, the astronomers propose that the diminutive galaxies formed in halos that just so happened to be among the slowest spinning in the cosmos, with 99 percent of halos spinning faster. The idea, in principle, is simple. If you held out a piece of rope in one hand and started spinning in place, the rope would stretch out and reach farther. But if you slowed down, the rope would slump to the ground. This hypothesis would explain why we're only seeing the dots at such a nascent period of the universe. Over time, the halos would inevitably speed up, and their constituent galaxies would expand. "Dark matter halos are characterized by a rotational velocity: some of them spin very slowly, and others spin more rapidly," Loeb said in a statement about the work. "We showed that if you assume the little red dots are typically in the first percentile of the spin distribution of dark matter halos, then you explain all their observational properties." It's a compelling theory — but it's not the only game in town. Recently, two teams of astronomers found clues that what we're witnessing may actually be an entirely new class of cosmic object: "black hole stars." Their work suggests the glowing dots are an active supermassive black hole surrounded by a vast and thick shell of gas. The intense radiation of the black hole heats up the shell, which absorbs most of the emissions, dimming the light to an outside observer. In many ways, it resembles a star blown up to epic proportions — except, instead of nuclear fusion powering the center, there's a voracious black hole churning through matter. Loeb and Pacucci's theory doesn't address whether these slow-spinning galaxies have a black hole at their center, but suggests that they could form one. "Low-spin halos tend to concentrate mass in the center, which makes it easier for a black hole to accrete matter or for stars to form rapidly," Pacucci said in the statement. The luminous red dots, he added, "might help us understand how the first black holes formed and co-evolved with galaxies in the early universe." More on space: Astronomers in Awe of Terrifying "Eye of Sauron" That's Pointed Straight at Earth