logo
We Now Know What Switched The Lights on at The Dawn of Time

We Now Know What Switched The Lights on at The Dawn of Time

Yahoo26-05-2025
We finally know what brought light to the dark and formless void of the early Universe.
According to data from the Hubble and James Webb Space Telescopes, the origins of the free-flying photons in the early cosmic dawn were small dwarf galaxies that flared to life, clearing the fog of murky hydrogen that filled intergalactic space. A paper about the research was published in February 2024.
"This discovery unveils the crucial role played by ultra-faint galaxies in the early Universe's evolution," said astrophysicist Iryna Chemerynska of the Institut d'Astrophysique de Paris.
"They produce ionizing photons that transform neutral hydrogen into ionized plasma during cosmic reionization. It highlights the importance of understanding low-mass galaxies in shaping the Universe's history."
At the beginning of the Universe, within minutes of the Big Bang, space was filled with a hot, dense fog of ionized plasma. What little light there was wouldn't have penetrated this fog; photons would simply have scattered off the free electrons floating around, effectively making the Universe dark.
As the Universe cooled, after about 300,000 years, protons and electrons began to come together to form neutral hydrogen (and a little bit of helium) gas.
Most wavelengths of light could penetrate this neutral medium, but there was very little in the way of light sources to produce it. But from this hydrogen and helium, the first stars were born.
Those first stars delivered radiation that was strong enough to peel electrons away from their nuclei and reionize the gas. By this point, however, the Universe had expanded so much that the gas was diffuse, and could not prevent light from shining out.
By about 1 billion years after the Big Bang, the end of the period known as the cosmic dawn, the Universe was entirely reionized. Ta-da! The lights were on.
But because there's so much murk in the cosmic dawn, and because it's so dim and far away across time and space, we've had trouble seeing what's there.
Scientists thought that the sources responsible for most of the clearing must have been powerful – huge black holes whose accretion produces blazing light, for example, and large galaxies in the throes of star formation (baby stars produce a lot of UV light).
JWST was designed, in part, to peer into the cosmic dawn and try to see what lurks therein. It's been very successful, revealing all sorts of surprises about this crucial time in the formation of our Universe. Surprisingly, the telescope's observations now suggest that dwarf galaxies are the key player in reionization.
An international team led by astrophysicist Hakim Atek of the Institut d'Astrophysique de Paris turned to JWST data on a galaxy cluster called Abell 2744, backed up by data from Hubble.
Abell 2744 is so dense that space-time warps around it, forming a cosmic lens; any distant light traveling to us through that space-time becomes magnified. This allowed the researchers to see tiny dwarf galaxies close to the cosmic dawn.
Then, they used JWST to obtain detailed spectra of these tiny galaxies. Their analysis revealed that, not only are these dwarf galaxies the most abundant galaxy type in the early Universe, they are far brighter than expected.
In fact, the team's research shows that dwarf galaxies outnumber large galaxies by 100 to 1, and their collective output is four times the ionizing radiation usually assumed for larger galaxies.
"These cosmic powerhouses collectively emit more than enough energy to get the job done," Atek said.
"Despite their tiny size, these low-mass galaxies are prolific producers of energetic radiation, and their abundance during this period is so substantial that their collective influence can transform the entire state of the Universe."
It's the best evidence yet for the force behind reionization, but there's more work to be done. The researchers looked at one small patch of the sky; they need to make sure that their sample isn't just an anomalous cluster of dwarf galaxies, but is a representative sample of the entire population in the cosmic dawn.
They intend to study more cosmic lens regions of the sky to obtain a wider sample of early galactic populations. But just on this one sample, the results are incredibly exciting. Scientists have been chasing answers on reionization for as long we've known about it. We're on the brink of finally blowing away the fog.
"We have now entered uncharted territory with the JWST," said astrophysicist Themiya Nanayakkara of Swinburne University of Technology in Australia.
"This work opens up more exciting questions that we need to answer in our efforts to chart the evolutionary history of our beginnings."
The research has been published in Nature.
A version of this article was originally published in March 2024.
Light Travels Across The Universe Without Losing Energy. But How?
Scientists Discover New Dwarf Planet in Solar System, Far Beyond Pluto
JWST Detects Most Distant Galaxy Yet, 280 Million Years After Big Bang
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Researchers May Have Finally Cracked One Of The Universe's Oldest Mysteries
Researchers May Have Finally Cracked One Of The Universe's Oldest Mysteries

Yahoo

time2 hours ago

  • Yahoo

Researchers May Have Finally Cracked One Of The Universe's Oldest Mysteries

The early universe is perhaps one of the biggest mysteries of our time, and while we've come close to unraveling some of those earliest mysteries thanks to advancing tech like the James Webb Space Telescope and other observatories, scientists have still found themselves scratching their heads about how our universe formed and which molecules helped fuel the first star formations. Many believe that after the Big Bang occurred nearly 13.8 billion years ago, the universe was full of extremely dense material and very high temperatures. However, as the universe cooled -- in a matter of seconds, most theories suggest -- the first elements began to form from those materials. However, researchers believe they may have recreated the first molecules of our universe, which could help us solve one of the oldest mysteries of the cosmos -- whether or not the formation of early molecules slowed as the universe cooled down. Read more: This Is How Most Life On Earth Will End Solving Age-Old Mysteries With New Data For years, scientists have theorized that as the temperatures in the universe cooled, the rate at which the molecules form -- thus driving reactions that lead to star formation -- slowed. However, based on the information that they have uncovered by testing how certain molecules react to each other, the new research suggests that the reactions don't actually slow at all as the temperatures become lower. If proven, this could completely change the fundamentals of how scientists view the early formation of the universe, as well as our understanding of star and planet formation and how the universe has expanded since the Big Bang. The researchers found that the rate at which the reactions between the first molecules that likely formed in the early universe remain constant no matter what the temperature becomes. To test this hypothesis, the researchers had to recreate those first molecules, and then put them into an environment that would truly determine if their reactions slowed as the temperatures became lower. So, that's exactly what they did. Recreating The First Molecules In The Universe Scientists believe that the helium hydride ion (HeH+), which is thought to be the oldest molecule in the universe, was the first step in a chain reaction that led to the formation of molecular hydrogen (H2), which also happens to be the most common molecule found in our universe. Scientists theorize that these two molecules were essential to the formation of the first stars, and that for the gas cloud of a protostar to collapse to the point of nuclear fusion beginning, the heat inside of the protostar must dissipate. Thus, if the theories about the reactions slowing was true, it meant that formation could eventually slow as the star's fundamental compounds cooled. So, the researchers took the molecules and put them into conditions similar to what they might have experienced in the early universe. By taking the molecules and combining them together within a controlled environment -- which they could lower the temperature of -- they found that the reactions between the molecules didn't slow at all. Instead, they continued as they always had, allowing the researchers to actually study the collision rate based on how it varies between changes in the collision energy. There's still more work to do to prove the data fully here, but it does paint an interesting picture of what early formations within the universe might have looked like, as well as how they might have been driven. And, if we dive deeper into it, it could perhaps unlock more data about how the universe will continue to expand and form new stars and planets. Enjoyed this article? Sign up to BGR's free newsletter for the latest in tech and entertainment, plus tips and advice you'll actually use. Read the original article on BGR. Solve the daily Crossword

Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'
Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'

Yahoo

time2 hours ago

  • Yahoo

Hubble telescope uncovers rare star born from cosmic collision: 'A very different history from what we would have guessed'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers using the Hubble Space Telescope have discovered that a seemingly ordinary white dwarf star is actually the result of a dramatic stellar merger. This result, detailed in a new study led by Snehalata Sahu and Boris Gaensicke of the University of Warwick in the U.K., suggests that other "normal-looking" white dwarfs scattered throughout the universe could also have violent pasts. "It's a discovery that underlines things may be different from what they appear to us at first glance," Gaensicke, study co-author and a professor of physics at the University of Warwick who serves as the principal investigator of the Hubble program, said in a statement. "Until now, this appeared as a normal white dwarf, but Hubble's ultraviolet vision revealed that it had a very different history from what we would have guessed." The star, named WD 0525+526, is located about 128 light-years from Earth. Though it appeared rather standard at first glance through visible light, further observations using the Hubble telescope revealed telltale signs of a more turbulent origin, the new study reports. White dwarfs are the dense remnants of stars like our sun that have exhausted their fuel supplies and collapsed into Earth-size objects. Despite their small size, however, they can pack in up to 1.4 times the mass of the sun. Most white dwarfs form from the predictable evolution of single stars nearing the final days of their life cycles, which is a path our own sun is expected to follow in about 5 billion years. However, WD 0525+526 may have followed a very different path. Instead of forming from one dying star, it appears to have emerged from the violent collision and merger of two stars. This dramatic past, the new study says, left subtle but detectable fingerprints in the white dwarf's atmospheric makeup. When Gaensicke and his team examined WD 0525+526 with Hubble's ultraviolet instruments, they detected an unusual amount of carbon in the star's atmosphere — a key sign the star was formed in a merger. Typically, white dwarfs have outer layers of hydrogen and helium that obscure their carbon-rich cores. But in mergers such as this one, the intense collision can strip away much of these outer layers, allowing carbon to rise to the surface. The signals of such stars are difficult to detect in visible light, but become clearer in ultraviolet wavelengths — and that's where Hubble excels. WD 0525+526 is remarkable even among the small number of white dwarfs known to be merger remnants, according to the statement. It has a surface temperature of nearly 21,000 Kelvin (about 37,000 degrees Fahrenheit) and a mass 1.2 times that of the sun, making it both hotter and more massive than others in this rare category, the study notes. Because WD 0525+526 appeared completely normal in visible light, astronomers now suspect that many more white dwarfs could be hiding similar explosive origins. "We would like to extend our research on this topic by exploring how common carbon white dwarfs are among similar white dwarfs, and how many stellar mergers are hiding among the normal white dwarf family," Antoine Bedrad, a researcher at the University of Warwick who co-led the study, said in the statement. RELATED STORIES: — White dwarfs: Facts about the dense stellar remnants — White dwarfs are 'heavy metal' zombie stars endlessly cannibalizing their dead planetary systems — What is dark energy? Exploding white dwarf stars may help us crack the case "That will be an important contribution to our understanding of white dwarf binaries, and the pathways to supernova explosions." This research is described in a paper published Aug. 6 in the journal Nature Astronomy.

Record breaking black hole discovered by UT Austin astronomers
Record breaking black hole discovered by UT Austin astronomers

Yahoo

time2 hours ago

  • Yahoo

Record breaking black hole discovered by UT Austin astronomers

AUSTIN (KXAN) — The most distant black hole ever confirmed has now been discovered. A team led by astronomers from the University of Texas at Austin announced the discovery of the black hole in the CAPERS-LRD-z9 galaxy earlier this month. The black hole is 300 million times more massive than our sun. In fact, it has more mass than half of the stars in its own galaxy combined. Discovered using the James Webb Space Telescope, the black hole formed 500 million years after the Big Bang. This makes it 13.3 billion years old. The team, led by UT Austin's Cosmic Frontier Center, published its work on Aug. 6 in Astrophysical Journal Letters. To discover black holes, astronomers look for a peculiar light signature that signals fast moving gas. Gas that moves towards us is compressed into blue wavelengths, while gas moving away from us appears red through spectroscopy. In a press release from UT Austin, the paper's lead author, Anthony Taylor, said, 'There aren't many other things that create this signature (besides a black hole).' The galaxy where the black hole was discovered is called a 'Little Red Dot' galaxy. These galaxies formed in the first 1.5 billion years of the universe. The first discovery of these galaxies was made by the James Webb Space Telescope, which launched in 2021. The discovery of this black hole gives us a better understanding of the early universe. In that same press release, Steven Finkelstein, a co-author of the paper, said, 'This adds to growing evidence that early black holes grew much faster than we thought possible.' The team hopes the next steps for its research are to use James Webb to get more data on the CAPERS-LRD-z9 galaxy. Copyright 2025 Nexstar Media, Inc. All rights reserved. This material may not be published, broadcast, rewritten, or redistributed. Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store