A New Hidden State of Matter Could Make Computers 1,000x Faster
Here's what you'll learn when you read this story:
A new study highlights the remarkable ability of the quantum material tantalum disulfide, or 1T-TaS₂, to achieve a 'hidden metallic state' that allows it to transition from metallic conductor to an insulator and vice versa.
This could have huge implications for computing, as scientists expect it could push processors into the terahertz realm and improve computing speeds by a factor of 1,000.
This mixed phase still requires temperatures around -63 degrees Celsius to stay stable, which is very cold, but much easier for engineers to work with that the near-absolute-zero temperatures required by other, related states.
In December of 1947, scientists at Bell Laboratories in New Jersey tested the very first transistor. Although they likely didn't understand the full importance of that moment, it kickstarted a technological revolution that reshaped the world. That's because transistors—essentially on/off switches in electrical circuits—eventually allowed computers to downsize from room-scale behemoths to something that fits in our pocket.
Now, a new study—led by scientists at Northeastern University—is investigating the next era of transistors that utilize a 'hidden metallic state' capable of rapidly transitioning from a conductor to an insulator. If engineers are able to one day mass produce such devices, the study's authors suggest they could replace silicon components and speed-up electronics by at least a factor of 1,000. The results of this study were published in the journal Nature Physics.
'Processors work in gigahertz right now,' Northeastern University Alberto de la Torre, lead author of the study, said in a press statement. 'The speed of change that this would enable would allow you to go to terahertz.'
The breakthrough relies on a quantum material called tantalum disulfide, or 1T-TaS2. Researchers used a technique called 'thermal quenching,' which essentially allows this material to switch from a conductor to an insulator instantaneously. It was achieved by heating and then rapidly cooling the material across a critical temperature threshold, allowing for the 'hidden metallic state' to also exist alongside its insulating attribute. 'The idea is to heat the system above a phase transition and then cool it fast enough that it doesn't have time to fully reorganize,' de la Torre told IEEE Spectrum.
As the tantalum disulfide lattice cools at a rate of about 120 Kelvin per second (a.k.a. thermal quenching), electrons bunch together in some regions while spreading out in others. This forms a wave pattern known as a charge density wave (CDW) phase, and some of these phases can be conducting while others are insulating.
This attribute is immensely useful, as current electric components typically need both conductive and insulating materials for a device that is connected by some sort of interface. This quantum material essentially removes the need for those components, and instead uses one material controlled by light itself.
'Everyone who has ever used a computer encounters a point where they wish something would load faster,' Gregory Fiete, a co-author of the study from Northeastern University, said in a press statement. 'There's nothing faster than light, and we're using light to control material properties at essentially the fastest possible speed that's allowed by physics.'
This mixed phase is only stable up to -63 degrees Celsius (210 Kelvin)—which is definitely cold, but much warmer than the near-absolute-zero temperatures required by other, related states. The material also remains in this programmed state for months, so it can feasibly be used in computing devices in the near future. This discovery could also be a major boon for artificial intelligence, which expends a lot of energy just moving data between memory and processors. Materials like 1T-TaS2 could theoretically pull off 'in-memory computing' and drastically reduce power consumption, IEEE Spectrum reports.
The era of transistors and silicon components completely changed the world, but that nearly 80-year-old breakthrough is itself just one step on our journey to master the subatomic. The method of loading silicon wafers with transistors is possibly approaching the end of its usefulness, and the authors argue that it might be time for a new approach.
'We're at a point where in order to get amazing enhancements in information storage or the speed of operation, we need a new paradigm,' Fiete said in a press statement. 'Quantum computing is one route for handling this and another is to innovate in materials. That's what this work is really about.'
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Scientific American
2 hours ago
- Scientific American
How China Brought Clean Energy to Antarctica's Frigid Darkness
Five years ago electrical engineer Sun Hongbin was given what many would consider an impossible task: build a full-fledged clean-energy system amid some of the coldest temperatures on Earth, screaming winds and half-year darkness. China was then building its fifth Antarctic research station, called Qinling, on Inexpressible Island in Terra Nova Bay. And the nation's government was pushing the concept of 'green expeditions' to protect Antarctica's uniquely fragile environment while studying and surveying the continent. 'So having a system that would provide the bulk of Qinling's energy with renewable power fit that goal,' Sun says. But conventional solar and wind installations are no match for temperatures that plummet below –40 degrees Celsius, winds of up to 300 kilometers per hour (kmh) and ferocious blizzards. Such conditions can snap wind turbine blades, sharply reduce the performance of solar panels, and prevent batteries from charging and discharging properly. And of course, there are the six months of polar night, when the sun never rises above the horizon. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. 'It was a huge challenge' to build a system for the Earth's coldest, darkest and most remote continent, says Sun, now president of Taiyuan University of Technology in China and chief scientist for polar clean energy at the Polar Research Institute of China. But in late 2024 his team traveled to the station to install a system that took $14 million to develop. It consists of 10 wind turbines, 26 solar modules, a hydrogen energy system, a container full of frost-resistant lithium-ion batteries and a smart grid that can predict and balance supply and demand. The entire renewable system is now running and, according to Sun, should provide half of the base's average annual energy needs. 'The use of clean energy is a huge advancement to keep the continent clean,' says Kim Yeadong, chair of the Korean National Committee on Polar Research in South Korea, who was not involved with the project. 'Other stations will probably have to learn how they achieve that much clean energy. I think it's remarkable.' Where Diesel Power Is King A 2024 preprint analysis of 81 Antarctic research bases found that 37 had installed renewable-energy sources such as solar panels and wind turbines. But the proportion of renewable energy these bases used was 'often low,' the researchers wrote. An exception so far has been Belgium's Princess Elisabeth Station, which is only staffed during the Antarctic summer. It runs completely on wind and solar power, taking advantage of the almost 24-hour daylight. Even so, the vast majority of stations still depend on diesel-powered generators to keep their crews warm, fed and safe. The main reason this is the case is simply that 'they are used to using diesel,' says Daniel Kammen, a professor of energy at the University of California, Berkeley. But relying on diesel fuel has downsides: it is logistically difficult and expensive to transport bulky, liquid fossil fuels to such a remote location, often surrounded by sea ice. Highly specialized resources—typically including icebreakers and military personnel—are required to make the difficult refueling voyage, which usually takes place just once a year, under careful planning. And the stakes are high for Antarctica's relatively pristine and easily disrupted ecosystem. 'Every station that has oil or other fuels has had spills,' Kammen says. Although major oil spills have been rare, any contamination can have severe consequences on Antarctic soil and water because it takes a long time for oil to break down in subzero temperatures. That is not to mention the toll that burning fossil fuels is taking on the Antarctic ecosystem through climate change. So there is significant incentive to move away from diesel. Yet 'conventional wind turbines, solar panels, battery storage and hydrogen energy systems are designed to work above –30 degrees [C], but the conditions of Antarctic stations are often much worse,' Sun notes. 'In Qinling, for example, gales blow at 73 kmh or faster for more than 100 days every year. When this happens in cold temperatures, wind turbines become brittle and break easily.' Plus, battery and hydrogen technologies—which are used to store wind and solar power for later use—were 'not good enough' in the past to ensure that energy supplies for bases would be reliable around the clock and throughout the year, Kammen says. Come Clean To overcome those hurdles, Sun and his team built a 2,000-square-meter lab at Taiyuan University to simulate Antarctica's extreme weather conditions. It features controls that can drop the indoor temperature to –50 degrees C, a wind machine that can blast out gusts of up to 216 kmh and snow generators that can whip up instant blizzards. Over four years of testing, the team developed a number of Antarctic-ready renewable energy systems. One design is a turbine that eschews the pinwheel-like blades of a traditional windmill; instead it is shaped like an upended eggbeater, with both ends of each curved blade attached to a central pole. This design reduces the surface area of the blade being pushed on by the wind, minimizing stress on the structure while still capturing enough force to generate electricity. And it lowers the turbine's center of gravity to help prevent it from toppling in the wind, Sun says. His team also installed turbines that are conventionally shaped but use blades made with carbon fiber—a strong and lightweight material that can withstand temperatures as low as –50 degrees C, according to Wang Bin, one of the engineers who went to Antarctica to build the system. These blades are also shorter than standard ones so as to reduce contact with the winds and increase structural resilience, Wang says. For the solar power system, a special supporting frame was built to secure the panels to the ground so that they can better weather gales and heavy snow. And instead of the usual aluminum alloy, the frame is made of fiber-reinforced plastic. The latter has lower thermal conductivity, Sun's team explains, meaning the frame's temperature changes much more slowly when cold sets in and thus doesn't deform as easily. Instead of storing power in the most commonly employed types of lithium-ion batteries, which function poorly in subzero temperatures, the team used lithium-titanate batteries. Their chemistry makes it easier for lithium ions to move around inside the battery during the charging and discharging processes in extremely low temperatures. The scientists also built a thermal case around the batteries to keep them warm and designed a system to collect and store their waste heat—which can be directed back into the case when its internal temperature becomes too low, Wang adds. But perhaps the most significant step the team took was bringing hydrogen energy to Qinling to help power the station through the long and dark winter. To produce renewable hydrogen, an apparatus called an electrolyzer is powered by wind and solar energy to split water molecules into oxygen and hydrogen. The latter goes into high-pressure tanks that can store it for more than a year; when full, the tanks alone can keep the entire base running for around 48 hours, according to Sun's team. To do so, the hydrogen is directed into an electrochemical device called a fuel cell, where it reacts with oxygen from the air to produce electricity, with only water and heat as by-products. The former is recycled to use in further electrolysis, and the latter is stored to warm up the electrolyzer when it becomes too cold to run. The renewable system can currently produce 60 percent of the overall output of Qinling's energy system when it's running at full blast, with the remaining 40 percent coming from diesel. But Sun and his team are determined to raise that percentage—and to bring clean-energy systems to other Chinese polar bases as well. 'Sixty percent is a great start, but one needs to ramp up,' Kammen says. 'The goal really needs to be 100 percent renewable energy all year-round.'


Boston Globe
6 hours ago
- Boston Globe
Great Barrier Reef records largest annual coral loss in 39 years
Mike Emslie, who heads the tropical marine research agency's long-term monitoring program, said the live coral cover measured in 2024 was the largest recorded in 39 years of surveys. The losses from such a high base of coral cover had partially cushioned the serious climate impacts on the world's largest reef ecosystem, which covers 344,000 square kilometers (133,000 square miles) off the northeast Australian coast, he said. 'These are substantial impacts and evidence that the increasing frequency of coral bleaching is really starting to have detrimental effects on the Great Barrier Reef,' Emslie said on Thursday. Advertisement 'While there's still a lot of coral cover out there, these are record declines that we have seen in any one year of monitoring,' he added. Emslie's agency divides the Great Barrier Reef, which extends 1,500 kilometers (900 miles) along the Queensland state coast, into three similarly-sized regions: northern, central and southern. Living coral cover shrunk by almost a third in the south in a year, a quarter in the north and by 14% in the central region, the report said. Advertisement Because of record global heat in 2023 and 2024, the world is still going through its biggest — and fourth ever recorded — mass coral bleaching event on record, with heat stress hurting nearly 84% of the world's coral reef area, including the Great Barrier Reef, according to the U.S. National Oceanic and Atmospheric Administration's coral reef watch. So far at least 83 countries have been impacted. This bleaching event started in January 2023 and was declared a global crisis in April 2024. It easily eclipsed the previous biggest global coral bleaching event, from 2014 to 2017, when 68.2% had bleaching from heat stress. Large areas around Australia — but not the Great Barrier Reef — hit the maximum or near maximum of bleaching alert status during this latest event. Australia in March this year started aerial surveys of 281 reefs across the Torres Strait and the entire northern Great Barrier Reef and found widespread coral bleaching. Of the 281 reefs, 78 were more than 30% bleached. Coral has a hard time thriving and at times even surviving in prolonged hot water. They can survive short bursts, but once certain thresholds of weeks and high temperatures are passed, the coral is bleached, which means it turns white because it expels the algae that live in the tissue and give them their colors. Bleached corals are not dead, but they are weaker and more vulnerable to disease. Coral reefs often bounce back from these mass global bleaching events, but often they are not as strong as they were before. Coral reefs are considered a 'unique and threatened system' due to climate change and are especially vulnerable to global warming beyond 1.5 degrees Celsius (2.7 degrees Fahrenheit) since pre-industrial times, the United Nations Intergovernmental Panel on Climate Change proclaimed in 2018. The world has now warmed 1.3 degrees Celsius since pre-industrial times. That report said 'tropical corals may be even more vulnerable to climate change than indicated in assessments made in 2014.' Advertisement The report said back-to-back big bleaching events at the Great Barrier Reef in the mid 2010s 'suggest that the research community may have underestimated climate risks for coral reefs.' 'Warm water (tropical) coral reefs are projected to reach a very high risk of impact at 1.2°C, with most available evidence suggesting that coral-dominated ecosystems will be non-existent at this temperature or higher. At this point, coral abundance will be near zero at many locations,' the report said. Associated Press Science Writer Seth Borenstein in Washington, D.C., contributed to this report.

USA Today
12 hours ago
- USA Today
Antarctica evacuation: US researchers flown in high-risk winter night operation
Three staff members from a United States research base in Antarctica were medically evacuated to New Zealand during extreme cold and dark conditions amid the southern winter, New Zealand's air force said Wednesday, Aug. 6. The U.S. National Science Foundation requested an emergency evacuation for three people unable to receive necessary care on the continent, including one who required urgent treatment, according to the New Zealand Defense Force. Despite high-risk travel conditions, the flight landed successfully and all three received treatment. "With the support of Antarctica New Zealand and United States' National Science Foundation staff in Antarctica, we have been able to complete the flight and the patients are now getting the medical treatment they need in Christchurch," Air Component Commander Air Commodore Andy Scott said in the Aug. 6 news release Following detailed analysis of weather conditions and the airfield, the Royal New Zealand Air Force aircraft flew from the McMurdo Station on Tuesday afternoon, Aug. 5, and landed in Christchurch, New Zealand, the next morning. One doctor and other medical personnel with the New Zealand Defence Force were onboard to care for the patients throughout the flight, the agency said. The military group did not provide any details about why each staff member required medical treatment. Why was the trip so dangerous? The military group stated that mid-winter flights in Antarctica are among the most challenging trips due to extreme cold, variable weather conditions, and the difficulty of landing an aircraft on the ice during the dark hours. Temperatures at the McMurdo Station were as low as -24 Celsius (-11 Fahrenheit) on Aug. 6, Reuters reported. The crew used night vision goggles to navigate the essentially pitch-black trip, and the U.S. Antarctic Program Winter Team physically created a runway ahead of takeoff to ensure the aircraft could safely land, according to Scott. "Although they determine it is safe, it's still an extremely challenging environment to fly in," Scott said. "This, coupled with there being no airfields available to divert to once the aircraft is past a certain point south adds to the risk, so these missions are not taken lightly." The trip took nearly 20 hours, including a brief stint on the ice to refuel while the aircraft engines continued to run in a process known as "hot refueling," the New Zealand Defense Force said.