logo
Watch: 2 dust devils collide on Mars in rare case of extraterrestrial cannibalism

Watch: 2 dust devils collide on Mars in rare case of extraterrestrial cannibalism

Yahoo10-04-2025
When you buy through links on our articles, Future and its syndication partners may earn a commission.
NASA's Perseverance rover recently had a front-row seat to a rare case of Martian cannibalism: It filmed a massive, swirling "dust devil" engulfing a smaller twister on the Red Planet.
The roaming robot captured the epic encounter on Jan. 25, on the 1,399th sol (Martian day) of its mission. In the video, a smaller devil, which is barely visible in the images, follows in the wake of a larger twister (moving from left to right), before getting too close and being sucked into the larger vortex. The rover was around 0.6 mile (1 kilometer) from the pair when this happened.
The larger devil is estimated to measure around 210 feet (65 meters) wide, while the smaller cone appears to be just 16 feet (5 m) across. It is unclear how tall they were as they were cut off by the rover's field of view. However, a dust devil previously filmed by Perseverance — and with a width almost identical to the larger devil — was predicted to be around 1.2 miles (2 km) tall, or around five times taller than the Empire State Building.
"Convective vortices — aka dust devils — can be rather fiendish," Mark Lemmon, a Perseverance senior research scientist with the Space Science Institute in Boulder, Colorado, said in a NASA statement. "These mini-twisters wander the surface of Mars, picking up dust as they go and lowering the visibility in their immediate area."
Related: Listen to a Martian dust storm engulf the Perseverance rover in eerie, world-first audio recording
It is very rare for two dust devils to collide with one another, but when it happens, there are two possible outcomes: "If two dust devils happen upon each other, they can either obliterate one another or merge, with the stronger one consuming the weaker," Lemmon said.
"If you feel bad for the little devil in our latest video, it may give you some solace to know the larger perpetrator most likely met its own end a few minutes later," he added. "Dust devils on Mars only last about 10 minutes."
The largest devil was likely spinning at a max speed of more than 10 mph (16 km/h), based on data collected from previous sightings.
Dust devils are formed by warm air rising from the planet's sun-heated surface. As the air rises, cooler air rushes down to replace it, which is then heated and rises again. This cycle creates a column of rising air that starts to spin increasingly quickly. This phenomenon also occurs on Earth, though the results are usually far less dramatic.
"When the incoming air rises into the column, it picks up speed like a spinning ice skater bringing their arms closer to their body," NASA representatives wrote in the statement. "The air rushing in also picks up dust, and a dust devil is born."
When the new video was taken, Perseverance was deliberately scouring the horizon in search of the spinning devils to help gather data that can help researchers learn more about this phenomenon.
"Dust devils play a significant role in Martian weather patterns," Katie Stack Morgan, a project scientist for the Perseverance rover at NASA's Jet Propulsion Laboratory in Pasadena, California, said in the statement.
RELATED STORIES
—NASA's Perseverance rover may already have found signs of life on Mars, discovery of ancient lake sediments reveals
—In a 1st, NASA's Perseverance rover makes breathable oxygen on Mars
—NASA's Perseverance rover loses its hitchhiking 'pet rock' after more than a year together on Mars
Studying them is important because "these phenomena indicate atmospheric conditions, such as prevailing wind directions and speed, and are responsible for about half the dust in the Martian atmosphere," she added.
NASA's Viking orbiters captured the first-ever images of Martian dust devils in the 1970s, as the spacecraft spied the swirling structures from space.
However, Perseverance has captured some of the best videos of these mini-twisters, including a swarm of around a dozen funnels in July 2021. The rover also captured the first audio recording of a Martian dust devil in September 2021.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying
Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying

Yahoo

time2 hours ago

  • Yahoo

Could Comet 3I/Atlas Be A Threat? Here's What Experts Are Saying

On the 1st of July 2025, the Asteroid Terrestrial-Impact Last Alert System (ATLAS) in Chile spotted a new comet entering our solar system. This comet was named 3I/ATLAS, as it's only the third interstellar object humans observed passing through our solar system. The previous two interstellar bodies discovered were 1I/'Oumuamua (spotted in 2017), and 2I/BORISOV (detected in 2019). It seems that 3I/ATLAS is similar to 2I/BORISOV by its icy composition. Beyond that, we don't know much about the new interstellar visitor. Scientists rush to observe 3I/ATLAS and discover as much as they can, as it's predicted by its current trajectory and speed to leave our solar system by the end of the year. It will come closest to our sun in late October 2025, and the sun will melt some of its ice, which means 3I/ATLAS might get a robust comet tail composed of vapor and dust. Currently, this comet has a faint coma, the cloud of dust and gas that surrounds its nucleus. But this might change with its approach to the sun. Another interesting fact is that 3I/ATLAS will pass through Mars' orbit, and we don't know what will happen then. The fact that it was ATLAS that first discovered this comet got some people concerned. The Asteroid Terrestrial-Impact Last Alert System has a defensive nature. It's designed to spot and warn us about comets, asteroids, or other space objects that might be on a collision course with Earth. However, according to NASA, the interstellar object will most likely fly far enough from our planet without posing any danger. Read more: This Is How Most Life On Earth Will End What NASA Has To Say The ATLAS observatory in Chile is part of NASA's early warning program, spotting and defining all near-Earth objects (NEOs), especially if they're asteroids and comets that could strike our planet. ATLAS uses a network of wide-field telescopes that scan the night sky above Earth 24/7. Although designed for planetary defense against hazardous space objects, ATLAS is capable of detecting non-threatening, but scientifically interesting objects as well. The telescopes that are part of this defensive network are based in several observatories around the globe (South Africa, California, and Chile, to name a few), providing the researchers with round-the-globe coverage of the night sky. Of course, when 3I/ATLAS was first discovered, the first things determined were its trajectory and velocity. It was concluded that this comet is traveling at the speed of 137,000 miles/hour (61km/s), and the closest it will approach Earth is at 1.8 astronomical units (170 million miles, or 270 million kilometers, from Earth). NASA has ultimately concluded that 3I/ATLAS poses no threat to our planet. That said, the most interesting known fact about this interstellar visitor is its age. Following its current trajectory, scientists were able to determine 3I/ATLAS originated in a part of the Milky Way that we know is older than our solar system; meaning it's potentially older than 4.6 billion years old. It's estimated that 3I/ATLAS is around 7 billion years old, making it the oldest comet observed by humans so far. Could It Be An Alien Probe? Although very little is known about 3I/ATLAS so far, there are many interesting theories surrounding this interstellar visitor. Harvard-based astrophysicist Abraham Loeb and colleagues from the UK's Initiative for Interstellar Studies, Adam Hibbert and Adam Crowl, believe this interstellar object is not a comet at all; but an alien probe coming from afar to scan Earth and its surroundings. This is not the first time Loeb has suggested such a thing. In 2017, when Oumuamua was discovered, he claimed it was an alien probe due to its unusual shape, acceleration, reflectivity, and lack of trailing gases. Although he didn't come out with any specifics about 3I/ATLAS, Loeb warns that any interstellar object should be observed as possible alien technology. As of now, there's no evidence that 3I/ATLAS is anything but an interstellar comet passing through our solar system. It was lucky that ATLAS detected it, as it is believed millions of such objects pass near or through our system without ever being detected. Scientists such as Loeb might not be completely wrong, however. 3I/ATLAS is a unique interstellar comet, and we should pay more attention to it. Read the original article on BGR. Solve the daily Crossword

Giant 'X' appears over Chile as 2 celestial beams of light cross
Giant 'X' appears over Chile as 2 celestial beams of light cross

Yahoo

time10 hours ago

  • Yahoo

Giant 'X' appears over Chile as 2 celestial beams of light cross

When you buy through links on our articles, Future and its syndication partners may earn a commission. QUICK FACTS What it is: The luminous band of the Milky Way and the faint glow of zodiacal light Where it is: Cerro Tololo Inter-American Observatory, Chile When it was shared: Aug. 6, 2025 This stunning image from astrophotographer Petr Horálek captures two of the night sky's most glorious sights in one — the glowing heart of the Milky Way and the elusive "zodiacal light." Despite appearing alongside one another, these two streaks of light could not be more different in origin and composition. Astronomers have constructed some of humanity's best telescopes in the Southern Hemisphere to better see the bright core of the Milky Way — dense with stars and nebulae. That core passes through constellations including Scorpius, Sagittarius and Ophiuchus, which are higher in the sky the farther south they're viewed from. This image was taken at the Cerro Tololo Inter-American Observatory (CTIO), located at an altitude of 7,200 feet (2,200 meters) in the Chilean Andes within the southern Atacama Desert. At this height, above the densest and warmest part of Earth's atmosphere, incredibly clear and dark skies are the norm, enabling observers to see not only the bright band of the Milky Way but something less obvious that resides in the solar system — zodiacal light. The biggest visible solar system phenomenon in the night sky, zodiacal light is a faint, diffuse glow in the night sky that casual observers often miss. It consists of sunlight reflecting off dust in our cosmic neighborhood, possibly from passing asteroids and comets or from the leftovers of planet formation. In 2020, a paper also claimed that zodiacal light may be primarily made of dust blown off Mars. Either way, the glow of the solar system is an arresting sight, but hard to see. MORE SPACE PHOTOS —James Webb telescope captures one of the deepest-ever views of the universe —NASA unveils 9 stunning snapshots of the cosmos in X-ray vision —'Fighting dragons' light up little-known constellation in the Southern sky Zodiacal light is at its brightest around the equinoxes and is visible along the ecliptic — the apparent path the sun takes through the sky — as a triangular beam of light on the horizon a few hours before sunrise or after sunset. That timing has led to it being called either the "false dawn" or "false dusk," though its name comes from the fact that it's visible over the 13 constellations that make up the zodiac. Horálek's spectacular image was taken in 2022 when he was an audiovisual ambassador for NOIRLab, which operates CTIO. In the photo, from left to right, are the U.S. Naval Observatory Deep South Telescope, the DIMM1 Seeing Monitor, the Chilean Automatic Supernova Search dome, the UBC Southern Observatory and the Planetary Defense 1.0-meter Telescope. Solve the daily Crossword

'Sleeping giant' fault beneath Canada could unleash a major earthquake, research suggests
'Sleeping giant' fault beneath Canada could unleash a major earthquake, research suggests

Yahoo

time11 hours ago

  • Yahoo

'Sleeping giant' fault beneath Canada could unleash a major earthquake, research suggests

When you buy through links on our articles, Future and its syndication partners may earn a commission. A major fault in the Yukon, Canada, that has been quiet for at least 12,000 years may be capable of giving off earthquakes of at least magnitude 7.5, new research suggests. Based on the amount of strain the Tintina fault has accumulated over the past 2.6 million years, it is now under an amount of stress that could lead to a large quake within a human lifespan, researchers reported July 15 in the journal Geophysical Research Letters. The finding may require experts to rethink the earthquake danger in the region, the study authors said. An magnitude 7.5 earthquake would threaten a few small communities within the remote Yukon. But the finding that the Tintina fault may be capable of such a large quake is notable because the fault has been quiet since before the last ice age ended. "Major ancient faults like that can remain as weak zones in the Earth's crust and then focus ongoing tectonic strain," Theron Finley, a geoscientist who conducted the research while earning his doctorate at the University of Victoria in Canada, told Live Science. The Tintina fault is over 620 miles (1,000 kilometers) long and stretches from northeast British Columbia through the Yukon and into Alaska. On its southern end, it connects to the Rocky Mountain Trench fault, which creates a huge valley through southern Canada and northern Montana. Forty million years ago, during the Eocene epoch, one side of the Tintina fault slid 267 miles (430 km) against the other at a rate of about half an inch (13 millimeters) each year. Today, the fault seems quiet, with only occasional small earthquakes of magnitude 3 to 4 in some sections. However, "there has always been a question of whether it's still a little bit active or still accumulating strain at a slower rate," Finley said. To find out, Finley and his colleagues used high-resolution satellite data and lidar imagery of the Yukon. Lidar is a type of laser measurement that allows for precise imaging of topography while ignoring vegetation — an important tool for an area blanketed with forest. With this imagery, the researchers looked for signs on the surface of ancient earthquakes, such as fault "scarps," where the ground moved sharply upward on one side of the fault. "Those features can be hundreds of kilometers long in some cases, but they're only on the order of a couple meters high or wide, so we need the really high-resolution topographic data," Finley said. The researchers determined the dates of each rumple of the landscape by using traces left by incursions of glaciers, which occurred at known intervals 12,000 years ago, 132,000 years ago, and 2.6 million years ago. They found that over 2.6 million years, the fault's sides moved relative to each other by about 3,300 feet (1,000 m). Over the past 136,000 years, the opposing sides of the fault moved about 250 feet (75 m). It probably took hundreds of earthquakes to accumulate all that movement, Finley said, which translates to between 0.008 and 0.03 inches (0.2 to 0.8 mm) per year. The fault has not had a large earthquake that ruptured the ground surface for at least 12,000 years, according to the study. The researchers estimate that in that period, the fault has accumulated about 20 feet (6 m) of built-up strain — movement that hasn't yet been released in an earthquake. The fault probably breaks at between 3 and 33 feet (1 to 10 m) of strain, Finley said, so it's in the range where it might normally fracture. "It could still be many thousands of years before it reaches the threshold where it ruptures, but we don't know that and it's very hard to predict that," Finley said. Because the fault is active in its Alaska portion, it's not surprising to learn that the Tintina fault could be a sleeping giant, said Peter Haeussler, a geologist emeritus at the U.S. Geological Survey in Alaska. He said he was glad to see the evidence emerge."Somebody's finally found evidence for activity on the Tintina fault in the Yukon," Haeussler told Live Science. RELATED STORIES —There's a massive fault hiding under America's tallest mountain —Mystery magma reservoir found in volcanoless region of Alaska —Seattle's massive fault may result from oceanic crust 'unzipping itself' 55 million years ago "It ups the seismic hazard for this neck of the woods a little bit," he added, but not enormously, as the region was already known to be seismically active. The fault runs near Dawson City, Canada, Finley said, which has a population of about 1,600 and would be most threatened by a large quake. There are also mining facilities in the area, as well as a risk of quake-triggered landslides. To better understand the risk, geoscientists will need to excavate trenches in the fault to look for rock layers that show past earthquakes and how often they occurred. "Right now, we just know that many have occurred, but we don't have a sense of how frequently," Finley said. "Is 6 meters a lot of strain, or is it more likely there's a long way to go before another rupture?"

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store