
Shocking discovery! 230 giant viruses found lurking in Earth's oceans; scientists say
Source: Yahoo
Scientists have uncovered hundreds of new 'giant viruses' also known as '
giruses
', in oceans worldwide. They used advanced computer software to analyse and unravel many types of viruses present in waterways and oceans, and identified 230 unknown giant viruses. This finding is significant as it sheds light on the role of viruses in
ocean ecosystems
, particularly their impact on microscopic marine organisms like algae and amoeba, which are crucial to the ocean's food chain and health. This research advances our understanding of
giant viruses
and their role in shaping marine ecosystems.
Giant ocean viruses discovered with the power to alter photosynthesis
The study published in
Nature npj Viruses
, titled 'Expansion of the Genomic and Functional Diversity of Global Ocean Giant Viruses', reports the discovery of numerous previously unknown giant genomes and 530 novel functional proteins, significantly expanding the existing scientific understanding of viral diversity in the world's oceans. Notably, nine of these proteins involved
photosynthesis
, indicating that these viruses may have the ability to manipulate the host's photosynthesis during infection, providing new insights into the interaction between the virus and host, and complex relationships between their biological processes.
Source: Yahoo
ocean
Insights from the study
The study revealed that most of the giant viruses belonged to two classifications:
Algavirales
and Imitervirales. Algavirales, typically 100-200 nanometers in diameter, specialize in infecting photosynthetic algae, while Imitervirales possess a flexible genetic strategy that allows them to potentially survive in a wider variety of hosts. With their enormous genetic material, giant viruses may be able to manipulate their hosts more effectively, making them potentially more problematic than other viruses.
Giant viruses have been discovered in various marine environments, with a notable concentration in colder regions. The study found that the Baltic Sea and Antarctic waters are rich reservoirs of these viruses, with 108 and 65 discoveries, respectively. Other locations, such as the Arctic, South Pacific, and North Atlantic, also yielded significant findings. This suggests that many more giant viruses remain to be discovered, particularly in colder marine environments.
Source: Yahoo
Researchers' take on the study of giant viruses found in ocean
Researchers have made significant progress in understanding giant viruses through metagenomic approaches, but much remains to be discovered, particularly in the oceans. A new study used the BEREN tool to uncover 230 novel marine giant virus genomes and 398 partial genomes, providing insights into their functional potential and ecological impact.
Mohammad Moniruzzaman, a co-author of the study said, "By better understanding the diversity and role of giant viruses in the ocean and how they interact with algae and other ocean microbes, we can predict and possibly manage harmful algal blooms, which are human health hazards in Florida as well as all over the world.' 'Giant viruses are often the main cause of death for many phytoplankton, which serve as the base of the food web supporting ocean ecosystems and food sources. The novel functions found in giant viruses could have biotechnological potential, as some of these functions might represent novel enzymes'.
Another author, Benjamin Minch, said, 'This study allowed us to create a framework to improve existing tools for detecting novel viruses that could aid in our ability to monitor pollution and pathogens in our waterways'.
Also read |
Moon's volcanic history trapped in tiny glass beads: A valuable clue for NASA
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Time of India
2 days ago
- Time of India
Shocking discovery! 230 giant viruses found lurking in Earth's oceans; scientists say
Source: Yahoo Scientists have uncovered hundreds of new 'giant viruses' also known as ' giruses ', in oceans worldwide. They used advanced computer software to analyse and unravel many types of viruses present in waterways and oceans, and identified 230 unknown giant viruses. This finding is significant as it sheds light on the role of viruses in ocean ecosystems , particularly their impact on microscopic marine organisms like algae and amoeba, which are crucial to the ocean's food chain and health. This research advances our understanding of giant viruses and their role in shaping marine ecosystems. Giant ocean viruses discovered with the power to alter photosynthesis The study published in Nature npj Viruses , titled 'Expansion of the Genomic and Functional Diversity of Global Ocean Giant Viruses', reports the discovery of numerous previously unknown giant genomes and 530 novel functional proteins, significantly expanding the existing scientific understanding of viral diversity in the world's oceans. Notably, nine of these proteins involved photosynthesis , indicating that these viruses may have the ability to manipulate the host's photosynthesis during infection, providing new insights into the interaction between the virus and host, and complex relationships between their biological processes. Source: Yahoo ocean Insights from the study The study revealed that most of the giant viruses belonged to two classifications: Algavirales and Imitervirales. Algavirales, typically 100-200 nanometers in diameter, specialize in infecting photosynthetic algae, while Imitervirales possess a flexible genetic strategy that allows them to potentially survive in a wider variety of hosts. With their enormous genetic material, giant viruses may be able to manipulate their hosts more effectively, making them potentially more problematic than other viruses. Giant viruses have been discovered in various marine environments, with a notable concentration in colder regions. The study found that the Baltic Sea and Antarctic waters are rich reservoirs of these viruses, with 108 and 65 discoveries, respectively. Other locations, such as the Arctic, South Pacific, and North Atlantic, also yielded significant findings. This suggests that many more giant viruses remain to be discovered, particularly in colder marine environments. Source: Yahoo Researchers' take on the study of giant viruses found in ocean Researchers have made significant progress in understanding giant viruses through metagenomic approaches, but much remains to be discovered, particularly in the oceans. A new study used the BEREN tool to uncover 230 novel marine giant virus genomes and 398 partial genomes, providing insights into their functional potential and ecological impact. Mohammad Moniruzzaman, a co-author of the study said, "By better understanding the diversity and role of giant viruses in the ocean and how they interact with algae and other ocean microbes, we can predict and possibly manage harmful algal blooms, which are human health hazards in Florida as well as all over the world.' 'Giant viruses are often the main cause of death for many phytoplankton, which serve as the base of the food web supporting ocean ecosystems and food sources. The novel functions found in giant viruses could have biotechnological potential, as some of these functions might represent novel enzymes'. Another author, Benjamin Minch, said, 'This study allowed us to create a framework to improve existing tools for detecting novel viruses that could aid in our ability to monitor pollution and pathogens in our waterways'. Also read | Moon's volcanic history trapped in tiny glass beads: A valuable clue for NASA


Time of India
3 days ago
- Time of India
Mysterious pulses buzzing beneath Antarctica? What is happening inside the Earth?
One of the most remote and least understood regions on Earth is Antarctica, which remains under the thick cover of the snow all year round. And this time, scientists have come across a cosmic mystery that challenges everything we thought we knew about particle physics. While the icy continent is known for its extreme conditions, it's now the center of an anomaly that could open a new chapter in astrophysics. High above the frozen region, a mission is stationed that is designed to listen for radio signals generated by high-energy neutrinos hitting the Antarctic ice. These neutrinos are some of the most elusive particles in the universe, often passing through matter without leaving a trace. But during this mission, which is known as ANITA, it detected something entirely unexpected, which were some different radio signals that appeared to be coming from deep within the Earth itself. Unlike expected signals from space-borne neutrinos, these mysterious pulses appear to be rising from below the horizon, completely going against the known models of how particles move through the Earth. What is ANITA? ANITA, a high-altitude balloon experiment flown over Antarctica, was originally designed to detect radio waves produced when cosmic neutrinos collide with the Antarctic ice. by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like CVS Wants to Hide 87¢ Generic Viagra – Truth Inside Health Alliance by Friday Plans Learn More Undo These ultra-high-energy neutrinos are expected to come from above, not below. So when the team noticed signals arriving at steep angles, up to 30 degrees below the surface, it didn't make to physicist Stephanie Wissel, who is one of the authors of the paper Search for the Anomalous Events Detected by ANITA Using the Pierre Auger Observatory, 'The radio waves that we detected were at really steep angles, like 30 degrees below the surface of the ice. ' She added, 'It's an interesting problem because we still don't actually have an explanation for what those anomalies are, but what we do know is that they're most likely not representing neutrinos,' as quoted by the Newsweek. To reach ANITA from below, any particle would have to travel through thousands of miles of solid Earth. That kind of journey would usually weaken or completely stop any known particles like neutrinos or cosmic rays. Yet the signals were still strong, which added to the clues that something unusual was happening. Wissel suggested that one possibility could involve some unknown radio signal behaviour in icy or near-horizon conditions. 'My guess is that some interesting radio propagation effect occurs near ice and also near the horizon that I don't fully understand,' she said. 'But we certainly explored several of those—and we haven't been able to find any of those yet either. So, right now it's one of those long-standing mysteries. ' To get more answers, Wissel and her team are developing a new detector called the Payload for Ultrahigh Energy Observations, or PUEO. The next-generation system will be even more sensitive to these strange radio bursts. Neutrinos themselves are notoriously difficult to detect. 'You have a billion neutrinos passing through your thumbnail at any moment, but neutrinos don't really interact,' she explained to Newsweek. So, capturing even one event could offer valuable insights into the universe's most distant and energetic processes. For now, the origin of the mysterious signals remains unknown, but the scientific world is watching closely.


NDTV
4 days ago
- NDTV
Hundreds Of New Giant Viruses Discovered In Global Waters: Study
In a major scientific breakthrough, researchers have discovered hundreds of previously unknown giant viruses in oceans around the world. Led by marine biologist Benjamin Minch and virologist Mohammad Moniruzzaman from the University of Miami, the team used advanced computer software to analyze seawater samples and identify microbial genomes. Among their findings were 230 giant viruses never before documented. These discoveries are significant because they help scientists better understand ocean ecosystems, especially the role of viruses in the lives of microscopic marine organisms called protists. These include algae, amoeba, and flagellates, which are essential to the ocean's food chain and overall health. The study, titled "Expansion of the Genomic and Functional Diversity of Global Ocean Giant Viruses," was published on April 21, 2025, in the journal Nature npj Viruses. It reports the discovery of numerous previously unknown giant virus genomes, significantly expanding the existing scientific understanding of viral diversity in the world's oceans. Within these genomes, 530 new functional proteins were characterized, including nine proteins involved in photosynthesis. This indicates that these viruses may be able to manipulate their host and the photosynthesis process during infection. "By better understanding the diversity and role of giant viruses in the ocean and how they interact with algae and other ocean microbes, we can predict and possibly manage harmful algal blooms, which are human health hazards in Florida as well as all over the world," said Mohammad Moniruzzaman, a co-author of the study and an assistant professor in the Department of Marine Biology and Ecology. "Giant viruses are often the main cause of death for many phytoplankton, which serve as the base of the food web supporting ocean ecosystems and food sources. The novel functions found in giant viruses could have biotechnological potential, as some of these functions might represent novel enzymes." Until recently, giant viruses were largely undetected by scientific methods due to limitations in bioinformatic pipelines. The researchers created an innovative tool called BEREN (Bioinformatic tool for Eukaryotic virus Recovery from Environmental metageNomes), designed to identify giant virus genomes within extensive public DNA sequencing datasets. "We discovered that giant viruses possess genes involved in cellular functions such as carbon metabolism and photosynthesis-traditionally found only in cellular organisms, said Benjamin Minch, the lead author of the study and a doctoral student in the Department of Marine Biology and Ecology at the Rosenstiel School."This suggests that giant viruses play an outsized role in manipulating their host's metabolism during infection and influencing marine biogeochemistry." The authors used the University of Miami's Pegasus supercomputer at the Frost Institute for Data Science and Computing (IDSC) to process and assemble large metagenomes-often exceeding a gigabase per library-enabling the reconstruction of hundreds of microbial community libraries. "This study allowed us to create a framework to improve existing tools for detecting novel viruses that could aid in our ability to monitor pollution and pathogens in our waterways." Minch added.