logo
21, including children, fall ill in Florida after consuming raw milk

21, including children, fall ill in Florida after consuming raw milk

Yahooa day ago
Florida health officials are issuing a warning about the dangers of consuming raw milk after 21 people in the northeast and central parts of the state drank raw milk from the same farm and fell ill.
The Florida Department of Health issued the warning on Monday, Aug. 4, noting that due to sanitation practices and raw milk consumption, 21 people became sick, including six children under the age of 10. Among the patients, at least two have suffered "severe complications," the announcement read.
The illnesses were linked to one farm.
"Sanitation practices in this farm are of particular concern due to the number of cases," the department wrote.
In Florida, raw milk is only sold for non-human consumption as pet or animal food, which limits regulation efforts of sanitary practices. Containers are supposed to be labeled so buyers know they contain raw milk for animal consumption only.
"Floridians should be aware of potential risks associated with consumption, which may vary depending on the source of milk," the health department wrote. "The producer's handling of raw milk and milking procedures are vital in prevention of contamination. Many people consume raw milk safely."
Here's what we know so far.
What is raw milk?
Raw milk includes milk from cows, sheep, goats, or other animals that has not been pasteurized or heat-treated to destroy bacteria, the Florida Department of Health said in the announcement.
According to the Centers for Disease Control and Prevention (CDC), raw milk can be a source of foodborne illness, and while while contamination can be reduced, there is no guaranteed protection from harmful germs in raw milk.
"Pasteurized milk offers the same nutritional benefits without the risks of raw milk consumption," the CDC said on its website, adding that since the early 1900s, pasteurization has led to a drop in milk-borne illnesses.
According to the Florida Department of Health, raw milk can contain disease-causing bacteria such as Campylobacter, Escherichia coli (E. coli), Listeria, Salmonella and others. The bacteria can cause gastrointestinal illness, including diarrhea, vomiting and stomach cramps.
In California, state health officials warned the public after detecting the bird flu virus in raw milk from a central California dairy farm in November of last year.
U.S. Secretary of Health and Human Services Robert F. Kennedy Jr. has previously been quoted as saying he only drinks raw milk.
Details on infections linked to Florida farm
The most recent cases involved both Campylobacter and STEC (Shiga toxin-producing E. coli) infections, and were linked to one particular farm, the department said.
STEC bacteria at its most severe can lead to kidney failure, the department said. Other people at high-risk for severe illness include infants and young children, pregnant women, elderly individuals and individuals with weakened immune systems.
"Floridians are encouraged to use this information to make informed decisions about their health and sources of raw milk should they choose to consume it," the department said.
Contributing: Natalie Neysa Alund, USA TODAY
Saleen Martin is a reporter on USA TODAY's NOW team. She is from Norfolk, Virginia – the 757. Email her at sdmartin@usatoday.com.
This article originally appeared on USA TODAY: Raw milk from Florida farm linked to 21 illnesses
Solve the daily Crossword
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium
Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium

CNN

time25 minutes ago

  • CNN

Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium

In a major new finding almost a decade in the making, researchers at Harvard Medical School say they've found a key that may unlock many of the mysteries of Alzheimer's disease and brain aging — the humble metal lithium. Lithium is best known to medicine as a mood stabilizer given to people who have bipolar disorder and depression. It was approved by the US Food and Drug Administration in 1970, but it was used by doctors to treat mood disorders for nearly a century beforehand. Now, for the first time, researchers have shown that lithium is naturally present in the body in tiny amounts and that cells require it to function normally — much like vitamin C or iron. It also appears to play a critical role in maintaining brain health. In a series of experiments reported Wednesday in the journal Nature, researchers at Harvard and Rush universities found that depleting lithium in the diet of normal mice caused their brains to develop inflammation and changes associated with accelerated aging. In mice that were specially bred to develop the same kinds of brain changes as humans with Alzheimer's disease, a low-lithium diet revved the buildup of sticky proteins that form plaques and tangles in the brains that are hallmarks of the disease. It also sped up memory loss. Maintaining normal lithium levels in mice as they aged, however, protected them from brain changes associated with Alzheimer's. If further research supports the findings, it could open the door to new treatments and diagnostic tests for Alzheimer's, which affects an estimated 6.7 million older adults in the United States, according to the US Centers for Disease Control and Prevention. The research provides a unifying theory that helps explain so many of the puzzle pieces scientists have been trying to fit together for decades. 'It is a potential candidate for a common mechanism leading to the multisystem degeneration of the brain that precedes dementia,' said Dr. Bruce Yankner, a professor of genetics at Harvard Medical School, who led the study. 'It will take a lot more science to determine whether this is a common pathway… or one of several pathways,' to Alzheimer's, he added. 'The data are very intriguing.' In an editorial published in Nature, Dr. Ashley Bush, a neuroscientist who directs the Melbourne Dementia Research Center at the University of Melbourne in Australia, said the researchers 'present compelling evidence that lithium does in fact have a physiological role and that normal aging might impair the regulation of lithium levels in the brain.' He was not involved in the study. Close examination of human and animal brain tissues, along with genetic investigations in the study, found the mechanism that appears to be at play: Beta amyloid plaques — the sticky deposits that gum up the brains of Alzheimer's patients — bind to lithium and hold it, including the type that's normally present in the body, as well as the commonly prescribed form. This binding depletes lithium available for nearby cells, including important scavengers known as microglia. When the brain is healthy and functioning normally, microglia are waste managers, clearing away beta amyloid before it can accumulate and can cause harm. In the team's experiments, microglia from the brains of lithium-deficient mice showed a reduced ability to sweep away and break down beta amyloid. Yankner believes this creates a downward spiral. The accumulation of beta amyloid soaks up more and more lithium, further crippling the brain's ability to clear it away. He and his colleagues tested different lithium compounds and found one — lithium orotate — that doesn't bind to amyloid beta. When they gave lithium orotate to mice with signs of Alzheimer's in their brains, these changes reversed: Beta amyloid plaques and tangles of tau that were choking the memory centers of the brain were reduced. Mice treated with lithium were once again able to navigate mazes and learn to identify new objects, whereas those who got placebos showed no change in their memory and thinking deficits. In its natural form, lithium is an element, a soft, silvery-white metal that readily combines with other elements to form compounds and salts. It's naturally present in the environment, including in food and water. Scientists have never fully known how it works to improve mood — only that it does. The original formula for 7Up soda included lithium — it was called 7Up Lithiated Lemon Soda — and touted as a hangover cure and mood lifter 'for hospital or home use.' Some hot springs known to contain mineral water brimming with lithium became sought out wellness destinations for their curative powers. Still, people who take prescription doses of lithium — which were much higher than the doses used in the new study — can sometimes develop thyroid or kidney toxicity. Tests of the mice given low doses of lithium orotate showed no signs of damage. That's encouraging, Yankner said, but it doesn't mean people should try to take lithium supplements on their own. 'A mouse is not a human. Nobody should take anything based just on mouse studies,' Yankner said. 'The lithium treatment data we have is in mice, and it needs to be replicated in humans. We need to find the right dose in humans,' he added. The normal amounts of lithium in our bodies, and the concentrations given to the mice, are small — about 1,000 times lower than doses given to treat bipolar disorder, Yankner notes. Yankner said he hoped toxicity trials of lithium salts would start soon. Neither he nor any of his co-authors have a financial interest in the outcome of the research, he said. The National Institutes of Health was the major funder of the study, along with grants from private foundations. 'NIH support was absolutely critical for this work,' Yankner said. The new research corroborates earlier studies hinting that lithium might be important for Alzheimer's. A large Danish study published in 2017 found people with higher levels of lithium in their drinking water were less likely to be diagnosed with dementia compared with those whose tap water contained naturally lower lithium levels. Another large study published in 2022 from the United Kingdom found that people prescribed lithium were about half as likely has those in a control group to be diagnosed with Alzheimer's, suggesting a protective effect of the drug. But lithium's use in psychiatry caused it to become type cast as therapeutic, Yankner said. No one realized it might be important to the body's normal physiology. That happened in part because the amounts of lithium that typically circulate in the body are so small, they couldn't be quantified until recently. Yankner and his team had to adapt new technology to measure it. In the first stage of the research, the scientists tested the brain tissue and blood of older patients collected by the brain bank at Rush University for trace levels of 27 metals. Some of the patients had no history of memory trouble, while others had early memory decline and pronounced Alzheimer's. While there was no change in the levels of most metals they measured, lithium was an exception. Lithium levels were consistently lower in patients with mild cognitive impairment or Alzheimer's compared to those with normal brain function. The brains of patients Alzheimer's disease also showed increased levels of zinc and decreased levels of copper, something scientists had observed before. Consistently finding lower lithium levels in the brains of people with memory loss amounted to a smoking gun, Yankner said. 'At first, frankly, we were skeptical of the result because it wasn't expected,' said Yankner. But it held up even when they checked samples from other brain banks at Massachusetts General Hospital, Duke and Washington universities. 'We wanted to know whether this drop in lithium was biologically meaningful, so we devised an experimental protocol where we could take lithium selectively out of the diet of mice and see what happens,' Yankner said. When they fed the mice a low-lithium diet, simply dropping their natural levels by 50%, their brains rapidly developed features of Alzheimer's. 'The neurons started to degenerate. The immune cells in the brain went wild in terms of increased inflammation and worse maintenance function of the neurons around them, and it looked more like an advanced Alzheimer patient,' Yankner said. The team also found the gene expression profiles of lithium-deficient mice and people who had Alzheimer's disease looked very similar. The researchers then started to look at how this drop in lithium might occur. Yankner said in the earliest stages there's a decrease in the uptake of lithium in the brain from the blood. They don't yet know exactly how or why it happens, but it's likely to be from a variety of things including reduced dietary intake, as well as genetic and environmental factors. The major source of lithium for most people is their diet. Some of the foods that have the most lithium are leafy green vegetables, nuts, legumes and some spices like turmeric and cumin. Some mineral waters are also rich sources. In other words, Yankner said, a lot of the foods that have already proven to be healthy and reduce a person's risk of dementia may be beneficial because of their lithium content. 'You know, oftentimes one finds in science that things may have an effect, and you think you know exactly why, but then subsequently turn out to be completely wrong about why,' he said.

Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium
Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium

CNN

time26 minutes ago

  • CNN

Scientists say it may be possible to protect aging brains from Alzheimer's with an old remedy — lithium

Chronic diseases Dementia Getting olderFacebookTweetLink Follow In a major new finding almost a decade in the making, researchers at Harvard Medical School say they've found a key that may unlock many of the mysteries of Alzheimer's disease and brain aging — the humble metal lithium. Lithium is best known to medicine as a mood stabilizer given to people who have bipolar disorder and depression. It was approved by the US Food and Drug Administration in 1970, but it was used by doctors to treat mood disorders for nearly a century beforehand. Now, for the first time, researchers have shown that lithium is naturally present in the body in tiny amounts and that cells require it to function normally — much like vitamin C or iron. It also appears to play a critical role in maintaining brain health. In a series of experiments reported Wednesday in the journal Nature, researchers at Harvard and Rush universities found that depleting lithium in the diet of normal mice caused their brains to develop inflammation and changes associated with accelerated aging. In mice that were specially bred to develop the same kinds of brain changes as humans with Alzheimer's disease, a low-lithium diet revved the buildup of sticky proteins that form plaques and tangles in the brains that are hallmarks of the disease. It also sped up memory loss. Maintaining normal lithium levels in mice as they aged, however, protected them from brain changes associated with Alzheimer's. If further research supports the findings, it could open the door to new treatments and diagnostic tests for Alzheimer's, which affects an estimated 6.7 million older adults in the United States, according to the US Centers for Disease Control and Prevention. The research provides a unifying theory that helps explain so many of the puzzle pieces scientists have been trying to fit together for decades. 'It is a potential candidate for a common mechanism leading to the multisystem degeneration of the brain that precedes dementia,' said Dr. Bruce Yankner, a professor of genetics at Harvard Medical School, who led the study. 'It will take a lot more science to determine whether this is a common pathway… or one of several pathways,' to Alzheimer's, he added. 'The data are very intriguing.' In an editorial published in Nature, Dr. Ashley Bush, a neuroscientist who directs the Melbourne Dementia Research Center at the University of Melbourne in Australia, said the researchers 'present compelling evidence that lithium does in fact have a physiological role and that normal aging might impair the regulation of lithium levels in the brain.' He was not involved in the study. Close examination of human and animal brain tissues, along with genetic investigations in the study, found the mechanism that appears to be at play: Beta amyloid plaques — the sticky deposits that gum up the brains of Alzheimer's patients — bind to lithium and hold it, including the type that's normally present in the body, as well as the commonly prescribed form. This binding depletes lithium available for nearby cells, including important scavengers known as microglia. When the brain is healthy and functioning normally, microglia are waste managers, clearing away beta amyloid before it can accumulate and can cause harm. In the team's experiments, microglia from the brains of lithium-deficient mice showed a reduced ability to sweep away and break down beta amyloid. Yankner believes this creates a downward spiral. The accumulation of beta amyloid soaks up more and more lithium, further crippling the brain's ability to clear it away. He and his colleagues tested different lithium compounds and found one — lithium orotate — that doesn't bind to amyloid beta. When they gave lithium orotate to mice with signs of Alzheimer's in their brains, these changes reversed: Beta amyloid plaques and tangles of tau that were choking the memory centers of the brain were reduced. Mice treated with lithium were once again able to navigate mazes and learn to identify new objects, whereas those who got placebos showed no change in their memory and thinking deficits. In its natural form, lithium is an element, a soft, silvery-white metal that readily combines with other elements to form compounds and salts. It's naturally present in the environment, including in food and water. Scientists have never fully known how it works to improve mood — only that it does. The original formula for 7Up soda included lithium — it was called 7Up Lithiated Lemon Soda — and touted as a hangover cure and mood lifter 'for hospital or home use.' Some hot springs known to contain mineral water brimming with lithium became sought out wellness destinations for their curative powers. Still, people who take prescription doses of lithium — which were much higher than the doses used in the new study — can sometimes develop thyroid or kidney toxicity. Tests of the mice given low doses of lithium orotate showed no signs of damage. That's encouraging, Yankner said, but it doesn't mean people should try to take lithium supplements on their own. 'A mouse is not a human. Nobody should take anything based just on mouse studies,' Yankner said. 'The lithium treatment data we have is in mice, and it needs to be replicated in humans. We need to find the right dose in humans,' he added. The normal amounts of lithium in our bodies, and the concentrations given to the mice, are small — about 1,000 times lower than doses given to treat bipolar disorder, Yankner notes. Yankner said he hoped toxicity trials of lithium salts would start soon. Neither he nor any of his co-authors have a financial interest in the outcome of the research, he said. The National Institutes of Health was the major funder of the study, along with grants from private foundations. 'NIH support was absolutely critical for this work,' Yankner said. The new research corroborates earlier studies hinting that lithium might be important for Alzheimer's. A large Danish study published in 2017 found people with higher levels of lithium in their drinking water were less likely to be diagnosed with dementia compared with those whose tap water contained naturally lower lithium levels. Another large study published in 2022 from the United Kingdom found that people prescribed lithium were about half as likely has those in a control group to be diagnosed with Alzheimer's, suggesting a protective effect of the drug. But lithium's use in psychiatry caused it to become type cast as therapeutic, Yankner said. No one realized it might be important to the body's normal physiology. That happened in part because the amounts of lithium that typically circulate in the body are so small, they couldn't be quantified until recently. Yankner and his team had to adapt new technology to measure it. In the first stage of the research, the scientists tested the brain tissue and blood of older patients collected by the brain bank at Rush University for trace levels of 27 metals. Some of the patients had no history of memory trouble, while others had early memory decline and pronounced Alzheimer's. While there was no change in the levels of most metals they measured, lithium was an exception. Lithium levels were consistently lower in patients with mild cognitive impairment or Alzheimer's compared to those with normal brain function. The brains of patients Alzheimer's disease also showed increased levels of zinc and decreased levels of copper, something scientists had observed before. Consistently finding lower lithium levels in the brains of people with memory loss amounted to a smoking gun, Yankner said. 'At first, frankly, we were skeptical of the result because it wasn't expected,' said Yankner. But it held up even when they checked samples from other brain banks at Massachusetts General Hospital, Duke and Washington universities. 'We wanted to know whether this drop in lithium was biologically meaningful, so we devised an experimental protocol where we could take lithium selectively out of the diet of mice and see what happens,' Yankner said. When they fed the mice a low-lithium diet, simply dropping their natural levels by 50%, their brains rapidly developed features of Alzheimer's. 'The neurons started to degenerate. The immune cells in the brain went wild in terms of increased inflammation and worse maintenance function of the neurons around them, and it looked more like an advanced Alzheimer patient,' Yankner said. The team also found the gene expression profiles of lithium-deficient mice and people who had Alzheimer's disease looked very similar. The researchers then started to look at how this drop in lithium might occur. Yankner said in the earliest stages there's a decrease in the uptake of lithium in the brain from the blood. They don't yet know exactly how or why it happens, but it's likely to be from a variety of things including reduced dietary intake, as well as genetic and environmental factors. The major source of lithium for most people is their diet. Some of the foods that have the most lithium are leafy green vegetables, nuts, legumes and some spices like turmeric and cumin. Some mineral waters are also rich sources. In other words, Yankner said, a lot of the foods that have already proven to be healthy and reduce a person's risk of dementia may be beneficial because of their lithium content. 'You know, oftentimes one finds in science that things may have an effect, and you think you know exactly why, but then subsequently turn out to be completely wrong about why,' he said.

No Alzheimer's Drug for Old Men?
No Alzheimer's Drug for Old Men?

Wall Street Journal

time31 minutes ago

  • Wall Street Journal

No Alzheimer's Drug for Old Men?

Increasing evidence shows that anti-amyloid Alzheimer's treatments can slow disease progression and give patients years more of quality time with loved ones. So will the Trump Administration at long last drop the Biden rules that restrict access to these medicines? Two studies presented at the Alzheimer's Association International Conference last week show that the benefits of amyloid-clearing monoclonal antibodies by Eli Lilly and Biogen-Eisai grow over time. The drugs slowed cognitive decline in clinical trials used for Food and Drug Administration approval by some 25% to 36% over 18 months. In follow-up studies, these benefits doubled at three years for Lilly's treatment and roughly quadrupled over four years for Biogen-Eisai's. That's great news for patients.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store