
‘Opportunistic' cockatoos wait in line, drink from fountains, study finds
The 'drinking-fountain innovation' is the second time researchers have found the birds adapting their behavior to suit their environment, following a 'bin-opening innovation' recorded by the same team in the city's south, where birds were found to open the lids of household trash cans to access food waste.
Lucy Aplin, an associate professor at the Australian National University and the University of Zurich, said the study was carried out as part of the Clever Cockie project, aimed at understanding how city living can drive behavioral change and social sharing. She said cockatoos are an excellent case study, as they are 'opportunistic and successful' in human environments, while Australia's relatively short history of urbanization means that evolutionary changes can be effectively ruled out.
Advertisement
'Cockatoos are fantastic urban adapters,' Aplin said. 'They're also the sort of elephant of the bird world. They're very long-lived, famously. They're also very slow-breeding and very intelligent, and so they're not the sort of species you would expect to be an automatic urban adapter, but they are.'
Advertisement
Aplin said her colleague Barbara C. Klump, a behavioral ecologist at the Max Planck Institute of Animal Behavior who led the research on the drinking-fountain study, 'literally stumbled' across cockatoos drinking from a fountain while out for a walk in western Sydney. Their team homed in on a 618-acre reserve in western Sydney made up of native vegetation, sports fields and, playgrounds that was home to a 'night roost' of about 100 to 150 birds.
Researchers mapped 10 drinking fountains in the area and temporarily marked 24 cockatoos with identifying colors, which they estimate accounted for 16 to 24 percent of the local population. They also tagged two other individuals to gain information on long-term movements.
From August to October 2019, they installed two cameras with a view of the fountain where cockatoos had been seen drinking. Known in Australia as a 'bubbler,' the fountain was made of a concrete stand about
three feet high
with a spring-loaded handle that needs to be twisted to operate.
Footage over 44 days showed 525 attempts at drinking, with researchers estimating that 70 percent of the local population tried to drink from the fountain. Overall, birds were successful 41 percent of the time, with those who tried to access the water for longer, or with fewer other birds present, more likely to be successful.
Footage from the cameras showed 'extensive queuing' before the birds gripped the handle of the fountain and twisted it with their feet, while also leaning their weight on the valve to ensure the water came out. Researchers found the number of attempts at drinking and success rate of the birds remained steady over the observation period, but a clear pattern emerged of birds coming to drink at 7:30 a.m. and 5:30 p.m. Weather also impacted the visitation rate, with fewer attempts when it was raining, the team found.
Advertisement
Aplin said it is a case study of an innovation that has 'arisen in response to an urban resource that's been provided by humans and then has spread through the local cockatoo population to establish as a tradition.' The data also suggests the fountain drinking is more widespread among the local population than the garbage-bin-opening behavior was at first, suggesting it had already undergone 'extensive social diffusion' before the study took place, researchers said.
Unlike the trash-opening study, where the practice was more common in males, researchers said there was no sex bias in attempts to use or success at using the fountain, suggesting perhaps that a sense of innovation is not varied by sex but rather by the resources of the bird—
with bin opening requiring more strength and therefore being suited to larger birds. The team also observed a range of techniques used to open the fountain, suggesting individual learning plays a role and possibly that those that have not yet mastered it are trying different methods.
It's the latest of findings that show how animals are adapting to urban environments around the world. Already, scientists have documented great tits and blue tits in Britain
piercing the tops of milk bottles to drink their contents, bullfinches opening sugar packets in Barbados, and long-tailed macaques bartering objects for food in Indonesia. Urban parrots are renowned for being particularly successful adapters despite being threatened by habitat loss and the wildlife trade, researchers said, with rosy-faced lovebirds in Phoenix found to use air-conditioning vents to cool off.
Advertisement
Aplin said her team is calling on citizen scientists to report instances of unusual cockatoo behavior for further investigation. She is already interested in following up reports of cockatoos knocking on windows for food and opening children's school bags to steal from their lunchboxes.
'In Australia, the kids often leave their bags outside the classroom, and then the cockatoos have ready access to work down the line of bags and pull all the lunchboxes out,' she said, adding that some schools have adapted their policies in response.
'I get a lot of these reports from the public now, and it's fascinating to see the variety of behavioral flexibility and innovations that these birds come up with.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 days ago
- Yahoo
This ‘Tower of Worms' Is a Squirming Superorganism
When food runs out, certain tiny roundworms, barely visible to the naked eye, crawl toward one another and build living, wriggling towers that move as one superorganism. For the first time, we've caught them doing that in nature on video. Scientists spent months pointing their digital microscope at rotting apples and pears to finally catch a glimpse of these living towers formed by Caenorhabditis roundworms in an orchard that is just downhill from the Max Planck Institute of Animal Behavior's location in Konstanz, Germany. 'It wasn't that hard to find. It's just the people didn't have the interest or time or funding for this kind of research,' says biologist Daniela Perez, lead author of the study. Perez and her team at the Max Planck Institute of Animal Behavior then studied this behavior in a laboratory to learn more. To spur the towering, they placed groups of Caenorhabditis elegans in a dish without food, alongside a toothbrush bristle that could work as a scaffold. Dozens of worms quickly climbed on top of the bristle and one another to form a structure that moved in an eerily coordinated manner. The tower responded to the touch of a glass pipe by attempting to latch onto it; it stretched to bridge the gap between the bottom of the dish and its lid; and it even waved its tip around to probe the surrounding environment. The results were published Thursday in Current Biology. [Sign up for Today in Science, a free daily newsletter] Researchers had previously observed this towering in the lab but didn't know that it was an actual survival strategy in the wild. 'Discovering [this behavior] in wild populations is really important as it shows this is a part of how these animals live and not just a lab artifact,' says William Schafer, a geneticist at the University of Cambridge, who studies C. elegans and was not involved in the study. Why do the worms do this? The researchers think towering helps worms set out to find richer food sources. When resources are limited, 'it probably makes sense for microscopic organisms to cooperate for dispersing by forming something bigger,' says the study's senior author Serena Ding. The towers could allow some of their members to reach new places or to hitchhike on other organisms such as fruit flies. The bigger question is how the worms communicate within the towers. If the worms on top latch onto a fly, how do those at the bottom know to detach from where they're anchored? They could communicate chemically through pheromones and mechanically through movement patterns, Schafer suggests. Perez says her team plans to test this next. 'Every time we have a meeting, we end up with 10 new project ideas,' she says. 'There are so many directions we can take this.'
Yahoo
2 days ago
- Yahoo
These worms stack together to form living towers, new study finds
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more. Nature seems to offer an escape from the hustle and bustle of city life, but the world at your feet may tell another story. Even in the shade of a fruit tree, you could be surrounded by tiny skyscrapers — not made of steel or concrete, but of microscopic worms wriggling and writhing into the shape of long, vertical towers. Even though these miniature architects, called nematodes, are found all over Earth's surface, scientists in Germany recently witnessed their impressive building techniques in nature for the first time. After months of closely inspecting rotten pears and apples in local orchards, researchers from the Max Planck Institute of Animal Behavior and the University of Konstanz were able to spot hundreds of the 1-millimeter-long (0.04-inch) worms climbing onto one another, amassing structures up to 10 times their individual size. To learn more about the mysterious physics of the soft, slimy towers, the study team brought samples of nematodes called Caenorhabditis elegans into a lab and analyzed them. There, the scientists noticed the worms could assemble in a matter of hours, with some reaching out from the twisting mass as exploratory 'arms' sensing the environment and building accordingly. But why the worms formed the structures wasn't immediately clear. The team's findings, published Thursday in the journal Current Biology, show that even the smallest animals can prompt big questions about the evolutionary purpose of social behaviors. 'What we got was more than just some worms standing on top of each other,' said senior study author Serena Ding, a Max Planck research group leader of genes and behavior. 'It's a coordinated superorganism, acting and moving as a whole.' To find out what was motivating the nematodes' building behavior, the study team tested the worms' reactions to being poked, prodded and even visited by a fly — all while stacked in a tower formation. 'We saw that they are very reactive to the presence of a stimulus,' said the study's first author, Daniela Perez, who is a postdoctoral researcher at the Max Planck Institute of Animal Behavior. 'They sense it, and then the tower goes towards this stimulus, attaching itself to our metal pick or a fly buzzing around.' This coordinated reaction suggests the hungry nematodes may be joining together to easily hitch a ride on larger animals such as insects that transport them to (not so) greener pastures with more rotten fruit to feast on, Perez said. 'If you think about it, an animal that is 1 millimeter long cannot just crawl all the way to the next fruit 2 meters (6.6 feet) away. It could easily die on the way there, or be eaten by a predator,' Perez explained. Nematodes are capable of hitchhiking solo too, she added, but arriving to a new area in a group may allow them to continue reproducing. The structures themselves may also serve as a mode of transport, as evidenced by how some worms formed bridges across gaps within the petri dishes to get from one surface to another, Perez noted. 'This discovery is really exciting,' said Orit Peleg, an associate professor of computer science who studies living systems at the University of Colorado Boulder's BioFrontiers Institute. 'It's both establishing the ecological function of creating a tower, and it really opens up the door to do more controlled experimentation to try to understand the perceptual world of these organisms, and how they communicate within a large group.' Peleg was not involved in the study. As the next step, Perez said her team would like to learn whether the formation of these structures is a cooperative or competitive behavior. In other words, are the towering nematodes behaving socially to help each other out, or are their towers more akin to a Black Friday sale stampede? Studying the behaviors of other self-assembling creatures could offer clues to the social norms of nematodes and help answer this question, Ding said. Ants, which assemble to form buoyant rafts to survive floodwaters, are among the few creatures known to team up like nematodes, said David Hu, a professor of mechanical engineering and biology at Georgia Tech. Hu was not involved in the study. 'Ants are incredibly sacrificial for one another, and they do not generally fight within the colony,' Hu said. 'That's because of their genetics. They all come from the same queen, so they are like siblings.' Like ants, nematodes didn't appear to display any obvious role differentiation or hierarchy within the tower structures, Perez said. Each worm from the base to the top of the structure was equally mobile and strong, indicating no competition was at play. However, the lab-cultivated worms were basically clones of one another, so it's not clear whether role differentiation occurs more often in nature, where nematode populations could have more genetic differences, she noted. Additionally, socially cooperative creatures tend to use some form of communication, Peleg said. In the case of ants, it may be their pheromone trails, while honeybees rely on their ritual dance routines and slime molds use their pulsing chemical signals. With nematodes, however, it's still not clear how they might communicate — or if they are communicating at all, Ding said. 'The next steps for (the team) are really just choosing the next questions to ask.' Notably, there has been a lot of interest in studying cooperative animal behaviors among the robotics community, Hu said. It's possible that one day, he added, information about the complex sociality of creatures like nematodes could be used to inform how technology, such as computer servers or drone systems, communicates.
Yahoo
2 days ago
- Yahoo
Worm towers are all around us
Biologists estimate that four out of five animals on Earth are nematodes (AKA roundworms).The tiny, wriggling, transparent invertebrates are the most abundant creatures on the planet and are found nearly everywhere–from permafrost to the deep ocean. More than one million species make up this ubiquitous group, which includes parasites, decomposers, predators, and more. 'They're not about to take over the world, because they already did,' says Serena Ding, a biologist at the Max Planck Institute of Animal Behavior in Konstanz, Germany tells Popular Science. 'Global worming has already happened.' Yet despite their ubiquity in the environment and in research labs (where the nematode C. elegans is a common model organism), a new discovery highlights that there's still a lot left to learn about these worms. Humble roundworms put cheerleaders' pyramid-building skills to shame. In order to disperse and explore their environment, wild nematodes self-assemble into tower-shaped superorganisms, according to a new study led by Ding and published June 5 in the journal Current Biology. Together, groups of the one-millimeter long worms can act as hyper-coordinated construction squads, with their living bodies providing the raw material for functional, temporary structures. It's a biological feat that even humans struggle to accomplish. This is also the first time that scientists have formally documented the nematode phenomenon occurring in nature. Worm towers– sometimes called swarms– 'were kind of just whispered about in the worm community,' says Ding. Previously, there were anecdotal reports and documented observations of these multi-nematode assemblages in labs and other artificial settings, but it wasn't certain if the formations happened naturally. Now, it's clear that nematodes do, indeed, form towers without artificial interference.'They do exist at high densities, they're interacting, and they're doing something together.' says Ding, who studies collective behavior. 'This was the most exciting thing for me.' One tower can contain thousands of worms in a single aggregation, which looks like a cohesive drop of wiggly gelatin. The impressive team effort enables nematodes to hitch rides on passing insects to more favorable habitats and bridge otherwise untraversable gaps, Ding and her co-authors suggest. Studying this behavior could offer insights into the evolution of social animals and how group decision making unfolds. Only a handful of organisms are known to form collective assemblages for the purpose of dispersing, similar to the nematode towers. 'It's actually super rare,' says Ding, noting that there are just three other, well-documented examples. Slime molds, which are technically single-celled amoebas, often take on multicellular forms, aggregating to make fruiting bodies that send out spores or moving from place to place in a group. Fire ants are known to form rafts with their bodies to get through flood waters, and arrange themselves into towers and bridges to navigate the landscape. Groups of spider mites weave themselves up with silk into a ball that can be carried to distant frontiers on the wind. With the new findings, nematodes gain membership to an exclusive group of evolutionary odd-balls. But though superorganism behavior is uncommon across the tree of life, worm towers themselves are surprisingly commonplace. To track them down in the wild, the researchers didn't have to travel far. They started by looking at fallen fruit beneath trees on their university campus with a digital microscope. On rotting apples and pears, they found dozens of nematode towers wiggling at the edges and points of the fruits' fleshy topography. The scientists also documented the behavior among nematodes found at a mushroom farm. Then, they devised a method of reliably recreating it in the lab. Here's their recipe for encouraging worm towers: place a few thousand nematodes on a food-free petri dish that's flat except for a single tooth brush bristle pointing upwards. Then, wait for a couple of hours. It's that simple. In hundreds of trials, the worms clustered into their writhing tower formation around the bristle more than 90 percent of the time. The longest towers in these experiments were well over a centimeter long (more than 10x a nematode's body length). Prior observations have noted towers about five centimeters–or almost two inches–high. In additional experiments with fruit flies and with a plastic probe, the researchers showed that worm towers strategically move towards any object that touches them or brushes by. The quick collective action allows the towers to shift fast enough to glom onto the leg of a passing insect. Previous research has documented individual nematodes hitchhiking on insects. However, through tower building, it seems that hundreds of worms can grab a ride at once, making the unwitting bug more akin to a subway train than a single passenger vehicle. The scientists also recorded two instances of the towers probing around and forming bridges to reach new locations, like the petri dish lid. Both observations support the leading hypothesis that nematodes build towers to access new, more suitable habitats. Using worms tagged with a fluorescent protein, Ding and her colleagues further found that nematodes building a tower all tend to orient themselves in the same direction. The worms point their heads upwards, and their bodies undulate in time with one another. Yet how they coordinate this intricate collaboration remains unclear. Many of the new observations prompt more confusion than clarity. For instance, in the wild groups, towers were exclusively made up of larvae. In the lab, nematodes of all ages collaborated to build. What accounts for the age difference is unknown. Ding and her colleagues didn't note any apparent competition for the top spots at the tip of the tower, where a worm is most likely to catch a ride. But it's unclear if a less genetically homogenous group of worms might be more competitive. The researchers also don't yet understand why the worms opt to disperse collectively instead of solo. Nor do they know how worms decide to begin forming a tower or the neural or sensory mechanisms that enable it. The basic physics of how thousands of tiny, slimy bodies manage to form something so coordinated and solid remains unresolved as well. 'There are the sorts of questions that we want to address,' says Ding. Ultimately, she hopes to use nematode towers to better understand animal cooperation across species. For so long in science, nematodes have been seen as little more than a microbiology model system, allowing researchers to test genetic modifications, understand cells, and map neurons. But, in looking so closely at the worms, generations of scientists may have missed the bigger picture. Nematodes have complex behaviors that are the product of millions of years of evolution. Learning more about what they do could shed light on how animals large and small work together, says Ding. 'It pays a lot to think about them as real animals,' she adds. 'They're everywhere, they're important, and they do things.'