logo
UN inquiry accuses Israel of committing acts of genocide in Gaza

UN inquiry accuses Israel of committing acts of genocide in Gaza

Ammon13-03-2025
Ammon News - An investigation released Thursday by a special UN commission confirmed that Israel committed acts of genocide in the Gaza Strip through the systematic destruction of reproductive health care facilities.
The UN Commission of Inquiry concluded that the occupying authorities partially destroyed the reproductive capacity of Palestinians in Gaza as a group through the systematic destruction of the reproductive health sector, amounting to two categories of genocide.
The UN Genocide Convention defines this crime as any acts committed with the intent to destroy, in whole or in part, a national, ethnical, or religious group.
The investigation found that Israel engaged in at least two of the five acts the UN Convention defines as genocide.
It indicated that Israel was "deliberately inflicting conditions of life on the group (Palestinians) calculated to bring about its physical destruction and imposing measures intended to prevent births within the group.
"These violations not only caused severe direct physical and psychological harm to women and girls, but also had long-term, irreversible consequences for the psychological and reproductive health and fertility prospects of Palestinians as a whole," said Navi Pillay, chair of the committee, in a statement.
The investigation found that Israel carried out systematic attacks targeting Gaza's health infrastructure, including hospitals and clinics providing reproductive health services.
It affirmed that this led to the near-total destruction of the health sector's ability to care for pregnant women and newborns.
It emphasized that "severe restrictions on essential medical supplies and medicines exacerbated the deteriorating reproductive health of women and girls in Gaza, directly contributing to high maternal and newborn mortality rates." WAFA
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Death Toll in Gaza Rises to 59,821 as Israeli Assault Continues - Jordan News
Death Toll in Gaza Rises to 59,821 as Israeli Assault Continues - Jordan News

Jordan News

time7 hours ago

  • Jordan News

Death Toll in Gaza Rises to 59,821 as Israeli Assault Continues - Jordan News

Death Toll in Gaza Rises to 59,821 as Israeli Assault Continues The number of Palestinians killed in the ongoing Israeli aggression on the Gaza Strip has risen to 59,821, with 144,851 injured, since October 7, 2023, according to medical sources. اضافة اعلان The latest figures reveal that 8,657 of those deaths and 32,810 injuries occurred since March 18, when Israel resumed its attacks following a temporary ceasefire agreement. Medical sources also confirmed that 11 Palestinians were killed and more than 36 wounded in the last 24 hours while attempting to obtain humanitarian aid, bringing the total number of "aid martyrs" to 1,132, with over 7,521 injured. Hospitals in Gaza also recorded six additional deaths due to famine and malnutrition in the past 24 hours, raising the total famine-related death toll to 133, including 87 children. Within the same 24-hour period, hospitals received 88 martyrs, including 12 bodies recovered from under the rubble, and 374 injured, highlighting the continuing toll on civilians amid worsening humanitarian conditions. — (WAFA)

Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains
Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains

Ammon

time8 hours ago

  • Ammon

Humanin Peptide: Exploring Its Multifaceted Potential Across Research Domains

Ammon News - Humanin is a small, mitochondria-derived peptide consisting of 24 amino acids, first identified in 2001. It has attracted significant attention within the scientific community due to its unique origin and diverse biological activities. Emerging research suggests that Humanin might serve as a pivotal molecule linking mitochondrial function with cellular survival pathways. This article explores the current understanding of Humanin properties and speculates on their prospective uses across various research domains, focusing on their biochemical attributes and the implications of their activity in cellular physiology, cellular aging, metabolic regulation, neurodegeneration, and beyond. Origin and Biochemical Properties of Humanin Humanin is encoded within the mitochondrial 16S ribosomal RNA gene, marking it as a mitochondria-derived peptide (MDP), a class of peptides believed to mediate inter-organelle communication. This origin positions Humanin uniquely as a potential signaling molecule that may support cellular homeostasis. The peptide's sequence is highly conserved across species, indicating an evolutionarily preserved function. Biochemically, Humanin is characterized by its amphipathic nature, allowing it to interact with both hydrophilic and hydrophobic environments. This feature may enable the peptide to cross cellular membranes and interact with intracellular targets, thereby modulating various signaling cascades. Humanin's interaction with specific receptors, including formyl peptide receptor-like 1 (FPRL1) and the ciliary neurotrophic factor receptor (CNTFR) complex, suggests it may trigger intracellular pathways involved in survival and metabolic regulation. Humanin in Mitochondrial Signaling and Cellular Stress Response Mitochondria are crucial regulators of cellular metabolism and apoptotic signaling. It has been hypothesized that Humanin may act as a mitochondrial stress signal, released under conditions of mitochondrial dysfunction. This theory posits that the peptide might serve as an adaptive response element, modulating cell fate decisions during stress. In research contexts, Humanin's possible role may be further investigated as a mediator of mitochondrial quality control and biogenesis. Studies suggest that the peptide might support mitochondrial dynamics by interacting with key proteins involved in fission and fusion processes. These processes are essential for maintaining mitochondrial integrity and function. Given the centrality of mitochondria in numerous diseases and cellular aging, Humanin may serve as a valuable probe for understanding mitochondrial contributions to pathophysiology and organismal longevity. Potential in cellular aging and Longevity Research Cellular aging is characterized by the progressive decline of cellular and organismal function, with mitochondrial dysfunction playing a prominent role. The discovery of Humanin coincided with investigations into the mitochondrial theory of cellular aging, leading to hypotheses that the peptide might modulate age-associated pathways. Research indicates that Humanin levels may decline over time, suggesting a correlation between peptide abundance and organismal integrity. It has been theorized that Humanin may support cellular resistance to oxidative stress and apoptotic stimuli, both of which escalate during cellular aging. Investigations suggest that Humanin may support the activity of longevity regulators, such as AMP-activated protein kinase (AMPK) and sirtuin, thereby contributing to metabolic homeostasis. Moreover, Humanin appears to regulate autophagy, a crucial mechanism for cellular waste removal and recycling. Given that defective autophagy is implicated in age-related diseases, the peptide might serve as a tool for probing autophagic processes and their manipulation to delay cellular aging phenotypes. Humanin's Implications in Neurodegenerative Disease Research Neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, involve complex pathologies where mitochondrial dysfunction, oxidative stress, and apoptosis converge. It has been proposed that Humanin might play a neuroprotective role by interfering with apoptotic pathways activated during neuronal stress. The peptide's interaction with receptors, such as FPRL1, and its support of intracellular signaling pathways may modulate inflammatory responses and cellular survival in neural tissue. Research suggests that Humanin may mitigate the support of toxic protein aggregates, a hallmark of many neurodegenerative conditions, by supporting mitochondrial resilience and reducing oxidative stress. Furthermore, Humanin's potential role in regulating neuroinflammation offers intriguing possibilities for studying the intersection between mitochondrial signals and immune responses within the central nervous system. The peptide may be utilized as a molecular tool in experimental models to dissect pathways implicated in neuronal survival and degeneration. Metabolic Research and Humanin Peptide Metabolic disorders, including diabetes and obesity, have increasingly been linked to mitochondrial dysfunction and impaired inter-organ communication. It has been hypothesized that Humanin may play a role in regulating glucose and lipid metabolism, thereby supporting systemic metabolic homeostasis. Some investigations suggest that Humanin may modulate insulin sensitivity and mitochondrial bioenergetics, supporting energy balance at the cellular and organismal levels. Studies suggest that the peptide may interact with signaling networks, such as the PI3K/Akt pathway, which plays a central role in metabolic control. Given its mitochondrial origin, Humanin may serve as a key signaling molecule in the crosstalk between mitochondria and other cellular organelles, such as the endoplasmic reticulum, further supporting metabolic processes. These properties position Humanin as a promising candidate for research into the molecular underpinnings of metabolic diseases and the development of novel metabolic modulators. Cardiovascular and Vascular Research Potential Emerging data indicate that Humanin might exert support on vascular cells and cardiovascular function. The peptide's interaction with endothelial cells suggests a role in regulating vascular tone and inflammatory responses within blood vessels. It is theorized that Humanin might support mitochondrial function in cardiomyocytes and vascular smooth muscle cells, possibly modulating cellular survival under ischemic or oxidative stress conditions. These properties have prompted investigations into the peptide's potential to support mechanisms underlying atherosclerosis and other vascular pathologies. As mitochondrial dysfunction is increasingly studied as a contributor to the progression of cardiovascular disease, Humanin may serve as a novel research molecule for dissecting mitochondrial involvement in vascular integrity and disease. Future Directions and Research Challenges Despite growing interest, much remains speculative about the full scope of Humanin's possible roles and mechanisms. It has been proposed that further elucidation of Humanin's receptor interactions, signaling pathways, and intracellular targets is necessary to unlock its research potential fully. Technological advances in mitochondrial biology, peptide synthesis, and receptor pharmacology may facilitate the development of experimental tools to explore Humanin's activities in greater detail. Additionally, the integration of omics technologies, such as proteomics and metabolomics, may provide comprehensive insights into the peptide's support on cellular networks. Conclusion Humanin represents a fascinating intersection of mitochondrial biology, cellular signaling, and organismal physiology. Its properties as a mitochondria-derived peptide position it uniquely as a molecule of interest across multiple research domains, including cellular aging, neurodegeneration, metabolism, cardiovascular science, and immunology. While many aspects of Humanin's function remain hypothetical, ongoing investigations suggest it might serve as a crucial mediator of mitochondrial communication and cellular resilience. Continued exploration of this peptide may not only deepen understanding of mitochondrial roles in science and disease but also unveil novel pathways for scientific inquiry. Visit this website for the best research compounds.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store