logo
First evidence of ‘living towers' made of worms discovered in nature

First evidence of ‘living towers' made of worms discovered in nature

CNN2 days ago

Nature seems to offer an escape from the hustle and bustle of city life, but the world at your feet may tell another story. Even in the shade of a fruit tree, you could be surrounded by tiny skyscrapers — not made of steel or concrete, but of microscopic worms wriggling and writhing into the shape of long, vertical towers.
Even though these miniature architects, called nematodes, are found all over Earth's surface, scientists in Germany recently witnessed their impressive building techniques in nature for the first time.
After months of closely inspecting rotten pears and apples in local orchards, researchers from the Max Planck Institute of Animal Behavior and the University of Konstanz were able to spot hundreds of the 1-millimeter-long (0.04-inch) worms climbing onto one another, amassing structures up to 10 times their individual size.
Related video
Rare video shows 12 sharks co-feed socially
To learn more about the mysterious physics of the soft, slimy towers, the study team brought samples of nematodes called Caenorhabditis elegans into a lab and analyzed them. There, the scientists noticed the worms could assemble in a matter of hours, with some reaching out from the twisting mass as exploratory 'arms' sensing the environment and building accordingly. But why the worms formed the structures wasn't immediately clear.
The team's findings, published Thursday in the journal Current Biology, show that even the smallest animals can prompt big questions about the evolutionary purpose of social behaviors.
'What we got was more than just some worms standing on top of each other,' said senior study author Serena Ding, a Max Planck research group leader of genes and behavior. 'It's a coordinated superorganism, acting and moving as a whole.'
To find out what was motivating the nematodes' building behavior, the study team tested the worms' reactions to being poked, prodded and even visited by a fly — all while stacked in a tower formation.
'We saw that they are very reactive to the presence of a stimulus,' said the study's first author, Daniela Perez, who is a postdoctoral researcher at the Max Planck Institute of Animal Behavior. 'They sense it, and then the tower goes towards this stimulus, attaching itself to our metal pick or a fly buzzing around.'
This coordinated reaction suggests the hungry nematodes may be joining together to easily hitch a ride on larger animals such as insects that transport them to (not so) greener pastures with more rotten fruit to feast on, Perez said.
'If you think about it, an animal that is 1 millimeter long cannot just crawl all the way to the next fruit 2 meters (6.6 feet) away. It could easily die on the way there, or be eaten by a predator,' Perez explained. Nematodes are capable of hitchhiking solo too, she added, but arriving to a new area in a group may allow them to continue reproducing.
The structures themselves may also serve as a mode of transport, as evidenced by how some worms formed bridges across gaps within the petri dishes to get from one surface to another, Perez noted.
'This discovery is really exciting,' said Orit Peleg, an associate professor of computer science who studies living systems at the University of Colorado Boulder's BioFrontiers Institute. 'It's both establishing the ecological function of creating a tower, and it really opens up the door to do more controlled experimentation to try to understand the perceptual world of these organisms, and how they communicate within a large group.' Peleg was not involved in the study.
As the next step, Perez said her team would like to learn whether the formation of these structures is a cooperative or competitive behavior. In other words, are the towering nematodes behaving socially to help each other out, or are their towers more akin to a Black Friday sale stampede?
Studying the behaviors of other self-assembling creatures could offer clues to the social norms of nematodes and help answer this question, Ding said.
Ants, which assemble to form buoyant rafts to survive floodwaters, are among the few creatures known to team up like nematodes, said David Hu, a professor of mechanical engineering and biology at Georgia Tech. Hu was not involved in the study.
'Ants are incredibly sacrificial for one another, and they do not generally fight within the colony,' Hu said. 'That's because of their genetics. They all come from the same queen, so they are like siblings.'
Like ants, nematodes didn't appear to display any obvious role differentiation or hierarchy within the tower structures, Perez said. Each worm from the base to the top of the structure was equally mobile and strong, indicating no competition was at play. However, the lab-cultivated worms were basically clones of one another, so it's not clear whether role differentiation occurs more often in nature, where nematode populations could have more genetic differences, she noted.
Additionally, socially cooperative creatures tend to use some form of communication, Peleg said. In the case of ants, it may be their pheromone trails, while honeybees rely on their ritual dance routines and slime molds use their pulsing chemical signals.
With nematodes, however, it's still not clear how they might communicate — or if they are communicating at all, Ding said. 'The next steps for (the team) are really just choosing the next questions to ask.'
Notably, there has been a lot of interest in studying cooperative animal behaviors among the robotics community, Hu said. It's possible that one day, he added, information about the complex sociality of creatures like nematodes could be used to inform how technology, such as computer servers or drone systems, communicates.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Cool Physics Feat Makes a Sphere Roll Down a Vertical Wall
Cool Physics Feat Makes a Sphere Roll Down a Vertical Wall

Gizmodo

time5 hours ago

  • Gizmodo

Cool Physics Feat Makes a Sphere Roll Down a Vertical Wall

Scientists have discovered that under the right conditions, a gummy bear-like ball can roll down a vertical wall all by itself—upending a core assumption in physics. If you place a rigid sphere on a similarly rigid inclined surface, gravity will cause it to roll down said surface. But what happens if the surface, or plane, is completely vertical? Researchers had previously assumed that, without an initial push, the sphere would simply drop straight to the ground without rolling. New research, however, has just redefined this belief—as well as long-held assumptions in the field of physics. University of Waterloo researchers have revealed the exact scenario necessary to make a sphere roll down a vertical plane without physical intervention. While this niche observation might seem detached from everyday life, it could have useful applications for exploring hard-to-reach areas such as pipes, caves, and even space. 'When we first saw it happening, we were frankly in disbelief,' Sushanta Mitra, executive director of the Waterloo Institute for Nanotechnology, said in a university statement. The researchers describe their discovery as a challenge to 'our basic understanding of physics.' They 'double-checked everything because it seemed to defy common sense. There was excitement in the lab when we confirmed it wasn't a fluke and that this was real vertical rolling.' Mitra and his colleagues unexpectedly caught the vertical rolling with high-speed cameras, and explained their discovery in a study published in April in the journal Soft Matter. In their experiment, the vertical rolling depended on a precise balance of softness—scientifically defined as elasticity—between a small sphere and a vertical cellphone-sized surface. When the spheres were too solid, they simply fell directly to the ground. On the other hand, when they were too soft, they either slid down without rolling, or stuck to the plane. But a sphere about as soft as a gummy bear spontaneously rolled down a vertical surface equivalent to a spongy mouse pad at a speed of about 0.039 inches (one millimeter) every two seconds, as described in the statement. 'The key is that as it rolls, the sphere slightly changes shape at the contact point,' Mitra explained. 'The front edge acts as a closing zipper, while the back edge acts like opening it. This asymmetry creates just enough torque, or grip, to maintain rolling without either sticking or completely falling off.' The team's findings could have practical implications for the creation of soft robots that can scale vertical walls to explore or monitor inaccessible infrastructure and natural environments both on and off Earth. 'This opens up a whole new way of thinking about movement on vertical surfaces,' Mitra continued. 'Currently, robots and vehicles are limited to horizontal or slightly inclined surfaces. This discovery could change that.'

Why The ‘Strawberry Moon' Will Be Lowest Until 2043 — And How To Photograph It
Why The ‘Strawberry Moon' Will Be Lowest Until 2043 — And How To Photograph It

Forbes

time7 hours ago

  • Forbes

Why The ‘Strawberry Moon' Will Be Lowest Until 2043 — And How To Photograph It

Tuesday's full strawberry moon occurs during two-year period known as the 'major lunar standstill" ... More or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. The full moon is seen here rising behind Stonehenge in England. (Photo by) The full strawberry moon will put on a dramatic show at moonrise on Tuesday, June 10 — low, luminous, and colored orange as it climbs into the southeastern sky. Get to an observing location that looks southeast — preferably low to the horizon — and at the specific time of moonrise where you are (during dusk), you'll see the red-orange orb rise before your eyes. Seen from the Northern Hemisphere, the full moon will rise far to the southeast, move across the sky close to the southern horizon, and set in the southwest close to dawn. It's happening because we're in the midst of a rare two-year period known as the 'major lunar standstill" or "lunistice," when a once-in 18.6-year event will create the lowest-hanging full moon since 2006 and until 2043. Earth's axis is tilted by 23.5 degrees with respect to the ecliptic, the path of the sun through the daytime sky, and, in effect, the plane of the solar system. That's what gives us seasons, and that's why planets are always found close to the ecliptic (hence the misused "planetary alignment" claims despite planets always being somewhat aligned with each other). The moon's orbit crosses the ecliptic twice each month, and when those crossings align with a new or full moon, eclipses can occur — hence the shared root in the words 'ecliptic' and 'eclipse.' While the sun's rise and set points vary throughout the year, changing by 47 degrees — and reaching the extreme points at the solstices — the moon's range is bigger, with that 5-degree tilt giving its rise and set points a 70-degree range near a major standstill, according to Griffith Observatory. Mount Coot-tha Lookout, Brisbane A major lunar standstill is a period when the northernmost and southernmost moonrise and moonset are furthest apart. Unlike a solstice (Latin for "sun stand still"), which lasts for one day, a major lunar standstill lasts for two years. These events are most noticeable during a full moon. Essentially, the swiveling and shifting orbit of the moon — a consequence of the sun's gravitational pull — is tilted at its maximum angle relative to the ecliptic. Every 18.6 years, the tilts combine to cause the moon to rise and set as much as 28.5° north or south of due east and west, respectively. Most people won't notice the major lunar standstill, but if you regularly watch the full moon rise from a particular place, go there — you'll get a shock when the moon rises at an extreme position much farther from where you might imagine it will rise. Imaging a full moon using a smartphone isn't easy, but it is possible to capture something special. First, switch off your flash and turn on HDR mode (if available) to better capture both the moon and the landscape as the light fades during dusk. Don't zoom in because digital zoom only blurs the details. Instead, frame the moon within a landscape for more impact, which is especially effective during this month's unusually far-southeast moonrise. If you use a manual photography app, stick to an ISO of 100 for a clean shot and experiment with slower (but not too slow) shutter speeds. A tripod will help, especially when using slow shutter speeds. However, if you don't have one, you can balance your phone on a wall or ledge. The key is to image it when it's low on the horizon and glowing orange. You've got a short window to capture that color, even with this low-hanging full moon, which will turn bright white as it lifts above the horizon. Wishing you clear skies and wide eyes.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into the world of global news and events? Download our app today from your preferred app store and start exploring.
app-storeplay-store