A surprising study revealed biological activity on a distant planet. Weeks later, scientists say there's more to the story
A tiny sign revealed in April seemed like it might change the universe as we know it.
Astronomers had detected just a hint, a glimmer of two molecules swirling in the atmosphere of a distant planet called K2-18b — molecules that on Earth are produced only by living things. It was a tantalizing prospect: the most promising evidence yet of an extraterrestrial biosignature, or traces of life linked to biological activity.
But only weeks later, new findings suggest the search must continue.
'It was exciting, but it immediately raised several red flags because that claim of a potential biosignature would be historic, but also the significance or the strength of the statistical evidence seemed to be too high for the data,' said Dr. Luis Welbanks, a postdoctoral research scholar at Arizona State University's School of Earth and Space Exploration.
While the molecules identified on K2-18b by the April study — dimethyl sulfide, or DMS, and dimethyl disulfide, or DMDS — are associated largely with microbial organisms on our planet, scientists point out that the compounds can also form without the presence of life. Now, three teams of astronomers not involved with the research, including Welbanks, have assessed the models and data used in the original biosignature discovery and got very different results, which they have submitted for peer review.
Meanwhile, the lead author of the April study, Nikku Madhusudhan, and his colleagues have conducted additional research that they say reinforces their previous finding about the planet. And it's likely that additional observations and research from multiple groups of scientists are on the horizon.
The succession of research papers revolving around K2-18b offers a glimpse of the scientific process unfolding in real time. It's a window into the complexities and nuances of how researchers search for evidence of life beyond Earth — and shows why the burden of proof is so high and difficult to reach.
Located 124 light-years from Earth, K2-18b is generally considered a worthy target to scour for signs of life. It is thought to be a Hycean world, a planet entirely covered in liquid water with a hydrogen-rich atmosphere, according to previous research led by Madhusudhan, a professor of astrophysics and exoplanetary science at the University of Cambridge's Institute of Astronomy. And as such, K2-18b has rapidly attracted attention as a potentially habitable place beyond our solar system.
Convinced of K2-18b's promise, Madhusudhan and his Cambridge colleagues used observations of the planet by the largest space telescope in operation, the James Webb Space Telescope, to study the planet further. But two scientists at the University of Chicago — Dr. Rafael Luque, a postdoctoral scholar in the university's department of astronomy and astrophysics, and Michael Zhang, a 51 Pegasi b / Burbidge postdoctoral fellow — spotted some problems with what they found.
After reviewing Madhusudhan and his team's April paper, which followed up on their 2023 research, Luque and Zhang noticed that the Webb data looked 'noisy,' Luque said.
Noise, caused by imperfections in the telescope and the rate at which different particles of light reach the telescope, is just one challenge astronomers face when they study distant exoplanets. Noise can distort observations and introduce uncertainties into the data, Zhang said.
Trying to detect specific gases in distant exoplanet atmospheres introduces even more uncertainty. The most noticeable features from a gas like dimethyl sulfide stem from a bond of hydrogen and carbon molecules — a connection that can stretch and bend and absorb light at different wavelengths, making it hard to definitively detect one kind of molecule, Zhang said.
'The problem is basically every organic molecule has a carbon-hydrogen bond,' Zhang said. 'There's hundreds of millions of those molecules, and so these features are not unique. If you have perfect data, you can probably distinguish between different molecules. But if you don't have perfect data, a lot of molecules, especially organic molecules, look very similar, especially in the near-infrared.'
Delving further into the paper, Luque and Zhang also noticed that the perceived temperature of the planet appeared to increase sharply from a range of about 250 Kelvin to 300 Kelvin (-9.67 F to 80.33 F or -23.15 C to 26.85 C) in research Madhusudhan published in 2023 to 422 Kelvin (299.93 F or 148.85 C) in the April study.
Such harsh temperatures could change the way astronomers think about the planet's potential habitability, Zhang said, especially because cooler temperatures persist in the top of the atmosphere — the area that Webb can detect — and the surface or ocean below would likely have even higher temperatures.
'This is just an inference only from the atmosphere, but it would certainly affect how we think about the planet in general,' Luque said.
Part of the issue, he said, is that the April analysis didn't include data collected from all three Webb instruments Madhusudhan's team used over the past few years. So Luque, Zhang and their colleagues conducted a study combining all the available data to see whether they could achieve the same results, or even find a higher amount of dimethyl sulfide. They found 'insufficient evidence' of both molecules in the planet's atmosphere.
Instead, Luque and Zhang's team spotted other molecules, like ethane, that could fit the same profile. But ethane does not signify life.
Arizona State's Welbanks and his colleagues, including Dr. Matt Nixon, a postdoctoral researcher in the department of astronomy at the University of Maryland College Park, also found what they consider a fundamental problem with the April paper on K2-18b.
The concern, Welbanks said, was with how Madhusudhan and his team created models to show which molecules might be in the planet's atmosphere.
'Each (molecule) is tested one at a time against the same minimal baseline, meaning every single model has an artificial advantage: It is the only explanation permitted,' Welbanks said.
When Welbanks and his team conducted their own analysis, they expanded the model from Madhusudhan's study.
'(Madhusudhan and his colleagues) didn't allow for any other chemical species that could potentially be producing these small signals or observations,' Nixon said. 'So the main thing we wanted to do was assess whether other chemical species could provide an adequate fit to the data.'
When the model was expanded, the evidence for dimethyl sulfide or dimethyl disulfide 'just disappears,' Welbanks said.
Madhusudhan believes the studies that have come out after his April paper are 'very encouraging' and 'enabling a healthy discussion on the interpretation of our data on K2-18b.'
He reviewed Luque and Zhang's work and agreed that their findings don't show a 'strong detection for DMS or DMDS.' When Madhusudhan's team published the paper in April, he said the observations reached the three-sigma level of significance, or a 0.3% probability that the detections occurred by chance.
For a scientific discovery that is highly unlikely to have occurred by chance, the observations must meet a five-sigma threshold, or below a 0.00006% probability that the observations occurred by chance. Meeting such a threshold will require many steps, Welbanks said, including repeated detections of the same molecule using multiple telescopes and ruling out potential nonbiological sources.
While such evidence could be found in our lifetime, it is less likely to be a eureka moment and more a slow build requiring a consensus among astronomers, physicists, biologists and chemists.
'We have never reached that level of evidence in any of our studies,' Madhusudhan wrote in an email. 'We have only found evidence at or below 3-sigma in our two previous studies (Madhusudhan et al. 2023 and 2025). We refer to this as moderate evidence or hints but not a strong detection. I agree with (Luque and Zhang's) claim which is consistent with our study and we have discussed the need for stronger evidence extensively in our study and communications.'
In response to the research conducted by Welbanks' team, Madhusudhan and his Cambridge colleagues have authored another manuscript expanding the search on K2-18b to include 650 types of molecules. They have submitted the new analysis for peer review.
'This is the largest search for chemical signatures in an exoplanet to date, using all the available data for K2-18b and searching through 650 molecules,' Madhusudhan said. 'We find that DMS continues to be a promising candidate molecule in this planet, though more observations are required for a firm detection as we have noted in our previous studies.'
Welbanks and Nixon were pleased that Madhusudhan and his colleagues addressed the concerns raised but feel that the new paper effectively walks back central claims made in the original April study, Welbanks said.
'The new paper tacitly concedes that the DMS/DMDS detection was not robust, yet still relies on the same flawed statistical framework and a selective reading of its own results,' Welbanks said in an email. 'While the tone is more cautious (sometimes), the methodology continues to obscure the true level of uncertainty. The statistical significance claimed in earlier work was the product of arbitrary modeling decisions that are not acknowledged.'
Luque said the Cambridge team's new paper is a step in the right direction because it explores other possible chemical biosignatures.
'But I think it fell short in the scope,' Luque said. 'I think it restricted itself too much into being a rebuttal to the (Welbanks) paper.'
Separately, however, the astronomers studying K2-18b agree that pushing forward on researching the exoplanet contributes to the scientific process.
'I think it's just a good, healthy scientific discourse to talk about what is going on with this planet,' Welbanks said. 'Regardless of what any single author group says right now, we don't have a silver bullet. But that is exactly why this is exciting, because we know that we're the closest we have ever been (to finding a biosignature), and I think we may get it within our lifetime, but right now, we're not there. That is not a failure. We're testing bold ideas.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


New York Post
a day ago
- New York Post
Trump admin plans first ‘Golden Dome' test of space-based missile defense system: report
Pentagon officials are aiming to test President Trump's space-based Golden Dome missile defense system to safeguard the US in the fourth quarter of 2028, according to a report. That timeframe lines up with Trump's ambitious goal to 'have it done in three years' and comes amid pitches from defense contractors to score coveted contracts to develop the cutting-edge system. 'They want a win to point to in November [2028],' a defense official told CNN. 'And DoD [Department of Defense] wants to avoid anything they perceive will slow them down.' Advertisement The test, which will be conducted by the Missile Defense Agency, is expected to be called FTI-X, which stands for 'Flight Test Integrated,' in a nod to how it will assess the Golden Dome's vast array of sensors and weapons systems, according to the report. Development of the state-of-the-art missile defense system is expected to cost about $175 billion, according to Trump, who tapped Gen. Michael Guetlein, vice chair of operations at the Space Force, to oversee the ambitious project in May. 4 President Trump wants the US to develop a state-of-the-art missile defense system to protect the homeland from advanced attacks. Getty Images Advertisement 4 The Golden Dome system is intended to safeguard the colossal continental US. AP Congress has already allocated $25 billion in funding for the Golden Dome in the One Big Beautiful Bill Act, which Trump signed into law last month. Military officials have explored space-based missile defense technologies for decades, including during Ronald Reagan's Star Wars program, also known as the Strategic Defense Initiative (SDI). Space-based missile defense technology can be advantageous because it can help thwart an enemy missile much earlier in its trajectory than other technologies that the US currently has in its arsenal. Advertisement It can also reduce geographical barriers and catch certain types of enemy missiles at a stage when they are slower and easier to intercept. However, there are many drawbacks. The US would need to make significant technological advances to develop that system, which is likely to be very costly and could entice other countries to weaponize space. 4 Skeptics have raised questions about whether the Golden Dome can be completed on time and within the budget President Trump laid out. Getty Images The defense official called it a 'hard problem, and technically very risky,' CNN reported. Advertisement 'The possible number of satellites needed to achieve a probability of engagement success is going to be very high, given the time and area needed to cover the continental United States,' the defense official said. Plans for the test in 2028 are expected to be 'phase one' of the project. A deluge of defense contractors and other private companies have been jockeying for contracts to help develop the massive defense system. Precise details of how the Golden Dome system will function are not fully known. Trump has taken inspiration from Israel's feted Iron Dome system, which helps defend populated areas from short-range attacks. Trump's plans would encompass much more sophisticated missiles, such as ballistic and hypersonic missiles, that may potentially be fired off from much more distant locations than what Iron Dome defends against. 'Once fully constructed, the Golden Dome will be capable of intercepting missiles even if they are launched from other sides of the world,' Trump teased in May. 4 Precise details about how the Golden Dome system will function are not clear. Getty Images Guetlein has admitted that the Pentagon faces enormous challenges in successfully completing the project. Advertisement 'I think the real technical challenge will be building of the space-based interceptor,' Guetlein said at a summit last month. 'That technology exists, I believe. I believe we have proven every element of the physics, that we can make it work.' 'What we have not proven is, first, can I do it economically, and then second, can I do it at scale? Can I build enough satellites to get after the threat? Can I expand the industrial base fast enough to build those satellites?' The initiative comes amid advancements in the American space industry, with tycoons such as Elon Musk working to bring down the costs of launching satellites. The Defense Department didn't reply to a request for comment Sunday.
Yahoo
a day ago
- Yahoo
How far can the most powerful telescope see into space?
When you buy through links on our articles, Future and its syndication partners may earn a commission. The world's first telescope, crafted in 1608 by the Dutch eyeglass maker Hans Lippershey, led to stunning technologies that would later revolutionize our understanding of the universe. While his telescope used simple lenses to magnify objects to about three times their size, later scientists built on this concept to peer into the depths of outer space. But some telescopes are more powerful than others, enabling us to spot distant stars and galaxies and allowing researchers to study extreme phenomena like black holes and Einstein rings. So, what's the most powerful telescope, and how far can it see into space? The answer isn't surprising to anyone familiar with today's headlines: The most powerful telescope is presently the James Webb Space Telescope (JWST), which was launched in December 2021 to detect infrared and near-infrared wavelengths, or wavelengths on the electromagnetic spectrum that are invisible to humans but can be felt as heat. Its predecessor and cousin, the Hubble Space Telescope, was primarily designed to detect visible-spectrum light and ultraviolet light, a wavelength that is often emitted by young stars. In space, many objects do not produce or reflect enough visible-spectrum light to see with the naked eye or to detect from far away. However, infrared light stretches so long that it is easier to detect from vast distances. The long wavelengths even have the benefit of piercing through clouds of dust, making them particularly compelling for astronomers hoping to peer into the deepest depths of the universe. Even the powerful new Vera C. Rubin Telescope, recently activated in Chile, can't see this far into space because it has to contend with anomalous obstructions such as dust. When the universe began, it was condensed into a hot mash of particles (protons, neutrons and electrons). As the universe expanded and cooled, the first stars and galaxies began to coalesce. The earliest of these we can see are around 13.7 billion years old, which is just a little over a hundred million years after the Big Bang. Related: How many galaxies orbit the Milky Way? "The James Webb Space Telescope has proven itself capable of seeing 98% of the way back to the Big Bang," Peter Jakobsen, an affiliate professor of astrophysics at the University of Copenhagen in Denmark, told Live Science in an email. "This exceeds the hopes and expectations of most of us involved in the early planning of the James Webb Space Telescope." How does the JWST see so far? Much of the power behind the JWST comes from its large primary mirror, Carol Christian, an astrophysicist at the Space Telescope Science Institute in Baltimore, told Live Science via email. JWST's primary mirror measures 21.3 feet (6.5 meters) in diameter, giving it a total collecting area of more than 270 square feet (25 square m). In contrast, Hubble's primary mirror is 8 feet (2.4 m) in diameter and has a collecting area of nearly 50 square feet (4.5 square m). However, both telescopes can see billions of light-years away because they are in space, well beyond the obscuring haze of Earth's atmosphere. Sign up for our newsletter Sign up for our weekly Life's Little Mysteries newsletter to get the latest mysteries before they appear online. However, JWST is also equipped with infrared light detectors situated to absorb light redirected from its large mirrors that help it identify distant light that Hubble cannot see. Meanwhile, Earth's atmosphere creates unique problems for terrestrial telescopes. These problems range from light pollution to "atmospheric turbulence," which is the random movement of air. Such factors can blur and distort images and limit a telescope's ability to see deeply into space. Space, on the other hand, is darker and free of these problems, so many of our strongest telescopes are placed well beyond Earth's atmosphere. In the case of James Webb, the telescope sits at a vantage point nearly 1 million miles (1.5 million kilometers) from Earth at a Lagrange point, or a point that has just the right gravitational balance for satellites to stay stable in orbit. How far can the James Webb Space Telescope see? When we look at the night sky, we're essentially looking back in time. Light travels 299,792,458 meters per second (186,282 miles per second), which means the light that reaches us from distant objects in space is older than when it was emitted. It takes light from our sun 43.2 minutes to reach Jupiter, but only 8 minutes to reach Earth. The distance to the outermost depths of the cosmos is vastly farther, which complicates the calculations. Measuring how far a telescope can see into space is not a straightforward process, Jakobsen said. Two hurdles astronomers regularly need to account for are the expansion of the universe and the finite speed of light, he said. Astronomers bypass these complications by measuring the redshift of distant celestial bodies. Redshift is what we see as celestial bodies accelerate farther and farther away from us. As the universe expands, the light emitted by faraway objects stretches to longer and "redder" wavelengths. The farther and longer the light travels, the greater its redshift becomes. Currently, one of the farthest known redshift contenders is the galaxy JADES-GS-z14-0, Jakobsen said. Its redshift puts it at about 290 million years after the Big Bang. RELATED MYSTERIES —How many satellites orbit Earth? —Do black holes really evaporate — and how do we know? —Where would a compass point in outer space? Another contender, which has not yet been published in a peer-reviewed journal, is the galaxy MoM-z14, which has been dated to a mere 280 million years after the Big Bang. Its redshift was 14.44 — larger than the redshift of JADES-GS-z14-0, which is 14.18. One study analyzed a set of particularly large and distant galaxies detected by the JWST and found they might be older than the current models of our universe suggest. The JWST has proven that it can peer deeper into space than Hubble, which has only seen as far back as 13.4 billion years. While the JWST is presently the champion in peering deep into our cosmic past, rivals are on the horizon. China is building a space telescope, called the China Space Station Telescope, that uses technology that will enable it to capture more light frequencies than JWST, allowing it to withdraw greater information from the cosmos. James Webb Space Telescope quiz: How well do you know the world's most powerful telescope?


CNN
a day ago
- CNN
‘The climate has always been changing': EPA chief defends push to roll back climate regulations
EPA Administrator Lee Zeldin joins CNN's Kasie Hunt to discuss the Trump administration's push to reverse a landmark scientific finding that planet-warming pollution harms human health.